forked from Miraclelucy/dive_into_deep_learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02-pandas.py
48 lines (41 loc) · 2.05 KB
/
02-pandas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import numpy as np
import pandas as pd
import torch
from numpy import nan as NaN
os.makedirs(os.path.join('..', 'data'), exist_ok=True) # 在上级目录创建data文件夹
datafile = os.path.join('..', 'data', 'house_tiny.csv') # 创建文件
with open(datafile, 'w') as f: # 往文件中写数据
f.write('NumRooms,Alley,Price\n') # 列名
f.write('NA,Pave,127500\n') # 第1行的值
f.write('2,NA,106000\n') # 第2行的值
f.write('4,NA,178100\n') # 第3行的值
f.write('NA,NA,140000\n') # 第4行的值
data = pd.read_csv(datafile) # 可以看到原始表格中的空值NA被识别成了NaN
print('1.原始数据:\n', data)
inputs, outputs = data.iloc[:, 0: 2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean()) # 用均值填充NaN
print('inputs:\n', inputs)
print('outputs:\n', outputs)
# 利用pandas中的get_dummies函数来处理离散值或者类别值。
# [对于 inputs 中的类别值或离散值,我们将 “NaN” 视为一个类别。] 由于 “Alley”列只接受两种类型的类别值 “Pave” 和 “NaN”
inputs = pd.get_dummies(inputs, dummy_na=True)
print('2.利用pandas中的get_dummies函数处理:\n', inputs)
x, y = torch.tensor(inputs.values), torch.tensor(outputs.values)
print('3.转换为张量:')
print(x)
print(y)
# 扩展填充函数fillna的用法
df1 = pd.DataFrame([[1, 2, 3], [NaN, NaN, 2], [NaN, NaN, NaN], [8, 8, NaN]]) # 创建初始数据
print('4.函数fillna的用法:')
print(df1)
print(df1.fillna(100)) # 用常数填充 ,默认不会修改原对象
print(df1.fillna({0: 10, 1: 20, 2: 30})) # 通过字典填充不同的常数,默认不会修改原对象
print(df1.fillna(method='ffill')) # 用前面的值来填充
# print(df1.fillna(0, inplace=True)) # inplace= True直接修改原对象
df2 = pd.DataFrame(np.random.randint(0, 10, (5, 5))) # 随机创建一个5*5
df2.iloc[1:4, 3] = NaN
df2.iloc[2:4, 4] = NaN # 指定的索引处插入值
print(df2)
print(df2.fillna(method='bfill', limit=2)) # 限制填充个数
print(df2.fillna(method="ffill", limit=1, axis=1)) #