-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfeature_extractor.py
67 lines (45 loc) · 1.78 KB
/
feature_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import cv2
import imageio
import numpy as np
from keras.models import Model
from inception_v3 import InceptionV3, preprocess_input
from util import mkdir_if_not_exist
def get_img_list_from_vid_reader(vid, extension, reshape_size=(299, 299), MAX_N_FRAME=300):
fps = int(round(vid.get_meta_data()['fps']))
img_list = []
for i in range(MAX_N_FRAME):
num = i * fps
try:
img = vid.get_data(num)
except:
return np.array(img_list)
if extension == '3gp':
img = img[25:120, :] # cropping
img = cv2.resize(img, reshape_size).astype(np.float32)
img_list.append(img)
return np.array(img_list)
def get_feature_mat(mymodel, input_data, batch_size=128):
idx = 0
preds_mat = None
while (idx < len(input_data)):
x = input_data[idx:idx + batch_size]
x = preprocess_input(x)
preds = mymodel.predict(x)
if preds_mat is None:
preds_mat = preds
else:
preds_mat = np.concatenate([preds_mat, preds])
idx += batch_size
return preds_mat.astype(np.float32)
def get_feature_mat_from_video(video_filename, output_dir='output'):
yt_vid, extension = video_filename.split('/')[-1].split('.')
assert extension in ['webm', 'mp4', '3gp']
mkdir_if_not_exist(output_dir, False)
output_filename = output_dir + '/' + yt_vid + '.npy'
vid_reader = imageio.get_reader(video_filename, 'ffmpeg')
img_list = get_img_list_from_vid_reader(vid_reader, extension)
base_model = InceptionV3(include_top=True, weights='imagenet')
model = Model(inputs=base_model.input, outputs=base_model.get_layer('avg_pool').output)
feature_mat = get_feature_mat(model, img_list)
np.save(output_filename, feature_mat)
return feature_mat