-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_test.py
35 lines (24 loc) · 961 Bytes
/
model_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import pickle
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
def predict_fare(fairway, d1, d2, d3, d4, d5, m) :
datas = np.array([[d1, d2, d3, d4, d5, m]], dtype=float)
with open('models.pkl', 'rb') as f:
loaded_models = pickle.load(f)
# print(loaded_models["북미"])
loaded_models = loaded_models[fairway]
scaler = loaded_models["Scaler"]
pca = loaded_models["PCA"]
datas = scaler.transform(datas)
month = datas[:, -1]
shipping_features = datas[:, :-1]
X_pca = pca.transform(shipping_features)
combined_features = np.column_stack((X_pca, month))
pred = loaded_models["Model"].predict(combined_features)
error = loaded_models["Error"]
return (pred, error)
if __name__ == "__main__" :
pred = predict_fare("북미", 24381.880, 93.600, 4363951, 862964, 25.90793, 9)
print(pred)