-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstat_losses.py
200 lines (173 loc) · 7.13 KB
/
stat_losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import torch.nn as nn
import torch.nn.functional as F
def deactivate_track_running_status(model):
for name, mm in model.named_modules():
if isinstance(mm, nn.BatchNorm2d):
mm.track_running_stats = False
def activate_track_running_status(model):
for name, mm in model.named_modules():
if isinstance(mm, nn.BatchNorm2d):
mm.track_running_stats = True
@torch.no_grad()
def select_uplow(nat_logit, col_logit, adv_logit, y, batch_size):
arange_bs = torch.arange(batch_size)
p_nat = nat_logit.softmax(1)[arange_bs, y]
p_col = col_logit.softmax(1)[arange_bs, y]
p_adv = adv_logit.softmax(1)[arange_bs, y]
ps = torch.stack([p_nat, p_col, p_adv])
upper_inds = ps.argmin(dim=0)
lower_inds = ps.argmax(dim=0)
return upper_inds, lower_inds
def get_upper_lower(nat, col, adv, upper_inds, lower_inds):
upper = torch.zeros(nat.size()).float().cuda()
upper[upper_inds == 0] = nat[upper_inds == 0]
upper[upper_inds == 1] = col[upper_inds == 1]
upper[upper_inds == 2] = adv[upper_inds == 2]
lower = torch.zeros(nat.size()).float().cuda()
lower[lower_inds == 0] = nat[lower_inds == 0]
lower[lower_inds == 1] = col[lower_inds == 1]
lower[lower_inds == 2] = adv[lower_inds == 2]
return upper, lower
def symmkl(upper_logit, lower_logit):
loss_1 = F.kl_div(
F.log_softmax(upper_logit, dim=1),
F.softmax(lower_logit.data, dim=1),
reduction="batchmean",
)
loss_2 = F.kl_div(
F.log_softmax(lower_logit, dim=1),
F.softmax(upper_logit.data, dim=1),
reduction="batchmean",
)
return 0.5 * (loss_1 + loss_2)
def stat_loss(
model, x_natural, y, optimizer, step_size, epsilon, perturb_steps, beta, loss_mode
):
batch_size = len(x_natural)
model.train()
x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cuda().detach()
x_col = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cuda().detach()
x_nat = x_natural.clone()
deactivate_track_running_status(model)
with torch.no_grad():
nat_logit = model(x_natural)
for att_ind in range(perturb_steps):
nat_logit = nat_logit.data
x_col.requires_grad_()
x_adv.requires_grad_()
col_logit = model(x_col)
adv_logit = model(x_adv)
upper_inds, lower_inds = select_uplow(
nat_logit, col_logit, adv_logit, y, batch_size
)
# 是否p_nat对target的预测是最大或者最小的,是的话则fasle,否则为true
nat_need = torch.logical_or(upper_inds == 0, lower_inds == 0)
# 不是都为false
if nat_need.sum() != 0:
x_nat.requires_grad_()
nat_logit = model(x_nat)
upper_logit, lower_logit = get_upper_lower(
nat_logit, col_logit, adv_logit, upper_inds, lower_inds
)
loss_att = symmkl(upper_logit, lower_logit) # 最小的那个logits为col,最大的那个logits为adv
if nat_need.sum() != 0:
grad = torch.autograd.grad(
loss_att, [x_nat, x_col, x_adv], allow_unused=True
)
x_adv, x_col = get_upper_lower(
x_natural.data, x_col.data, x_adv.data, upper_inds, lower_inds
)
grad_adv, grad_col = get_upper_lower(
grad[0], grad[1], grad[2], upper_inds, lower_inds
)
else:
grad = torch.autograd.grad(loss_att, [x_col, x_adv], allow_unused=True)
grad_adv, grad_col = get_upper_lower(
torch.zeros(x_natural.size()).cuda(),
grad[0],
grad[1],
upper_inds,
lower_inds,
)
x_col = x_col.detach() + step_size * torch.sign(grad_col.detach())
x_col = torch.min(torch.max(x_col, x_natural - epsilon), x_natural + epsilon)
x_col = torch.clamp(x_col, 0.0, 1.0)
x_adv = x_adv.detach() + step_size * torch.sign(grad_adv.detach())
x_adv = torch.min(torch.max(x_adv, x_natural - epsilon), x_natural + epsilon)
x_adv = torch.clamp(x_adv, 0.0, 1.0)
# prepare logits
col_logit = model(x_col)
activate_track_running_status(model)
nat_logit = model(x_natural)
adv_logit = model(x_adv)
upper_inds, lower_inds = select_uplow(
nat_logit, col_logit, adv_logit, y, batch_size
)
upper_logit, lower_logit = get_upper_lower(
nat_logit, col_logit, adv_logit, upper_inds, lower_inds
)
# get loss
loss_natural = F.cross_entropy(nat_logit, y)
loss_robust = symmkl(upper_logit, lower_logit)
loss = loss_natural + beta * loss_robust
with torch.no_grad():
arange_bs = torch.arange(batch_size)
ce_upper = F.cross_entropy(upper_logit, y)
ce_lower = F.cross_entropy(lower_logit, y)
ce_clean = F.cross_entropy(nat_logit, y)
return loss, ce_upper, ce_clean, ce_lower
def stat_loss_awp(
model, x_natural, y, optimizer, step_size, epsilon, perturb_steps, beta, loss_mode
):
batch_size = len(x_natural)
model.train()
x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cuda().detach()
x_col = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cuda().detach()
x_nat = x_natural.clone()
deactivate_track_running_status(model)
with torch.no_grad():
nat_logit = model(x_natural)
for att_ind in range(perturb_steps):
nat_logit = nat_logit.data
x_col.requires_grad_()
x_adv.requires_grad_()
col_logit = model(x_col)
adv_logit = model(x_adv)
upper_inds, lower_inds = select_uplow(
nat_logit, col_logit, adv_logit, y, batch_size
)
nat_need = torch.logical_or(upper_inds == 0, lower_inds == 0)
if nat_need.sum() != 0:
x_nat.requires_grad_()
nat_logit = model(x_nat)
upper_logit, lower_logit = get_upper_lower(
nat_logit, col_logit, adv_logit, upper_inds, lower_inds
)
loss_att = symmkl(upper_logit, lower_logit)
if nat_need.sum() != 0:
grad = torch.autograd.grad(
loss_att, [x_nat, x_col, x_adv], allow_unused=True
)
x_adv, x_col = get_upper_lower(
x_natural.data, x_col.data, x_adv.data, upper_inds, lower_inds
)
grad_adv, grad_col = get_upper_lower(
grad[0], grad[1], grad[2], upper_inds, lower_inds
)
else:
grad = torch.autograd.grad(loss_att, [x_col, x_adv], allow_unused=True)
grad_adv, grad_col = get_upper_lower(
torch.zeros(x_natural.size()).cuda(),
grad[0],
grad[1],
upper_inds,
lower_inds,
)
x_col = x_col.detach() + step_size * torch.sign(grad_col.detach())
x_col = torch.min(torch.max(x_col, x_natural - epsilon), x_natural + epsilon)
x_col = torch.clamp(x_col, 0.0, 1.0)
x_adv = x_adv.detach() + step_size * torch.sign(grad_adv.detach())
x_adv = torch.min(torch.max(x_adv, x_natural - epsilon), x_natural + epsilon)
x_adv = torch.clamp(x_adv, 0.0, 1.0)
return x_adv, x_col