-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlbgat.py
460 lines (402 loc) · 13.4 KB
/
lbgat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
from __future__ import print_function
import argparse
import os
import time
import warnings
import models
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torch.autograd import Variable
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms
from utils import Logger, random_seed, save_checkpoint
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser(description="PyTorch CIFAR LBGAT Defense")
parser.add_argument(
"--arch",
type=str,
default="ResNet18",
choices=["WideResNet", "PreActResNet18", "ResNet18"],
)
parser.add_argument(
"--arch-teacher",
type=str,
default="ResNet18",
choices=["WideResNet", "PreActResNet18", "ResNet18"],
)
# data
parser.add_argument(
"--data", type=str, default="CIFAR10", choices=["CIFAR10", "CIFAR100"]
)
parser.add_argument(
"--data-path", type=str, default="~/datasets/", help="where is the dataset CIFAR-10"
)
parser.add_argument(
"--batch-size",
type=int,
default=128,
metavar="N",
help="input batch size for training (default: 128)",
)
parser.add_argument(
"--test-batch-size",
type=int,
default=1000,
metavar="N",
help="input batch size for testing (default: 128)",
)
# traning setting
parser.add_argument(
"--epochs", type=int, default=100, metavar="N", help="number of epochs to train"
)
parser.add_argument("--weight-decay", "--wd", default=2e-4, type=float, metavar="W")
parser.add_argument("--lr", type=float, default=0.1, metavar="LR", help="learning rate")
parser.add_argument(
"--momentum", type=float, default=0.9, metavar="M", help="SGD momentum"
)
parser.add_argument(
"--no-cuda", action="store_true", default=False, help="disables CUDA training"
)
# TRADES setting
parser.add_argument(
"--norm",
default="l_inf",
type=str,
choices=["l_inf", "l_2"],
help="The threat model",
)
parser.add_argument("--epsilon", default=8.0 / 255, type=eval, help="perturbation")
parser.add_argument("--num-steps", default=10, type=int, help="perturb number of steps")
parser.add_argument(
"--step-size", default=2.0 / 255, type=eval, help="perturb step size"
)
parser.add_argument(
"--beta", default=6.0, type=float, help="regularization, i.e., 1/lambda in TRADES"
)
# Eval PGD setting
parser.add_argument("--test-epsilon", default=8.0 / 255, type=eval, help="perturbation")
parser.add_argument(
"--test-step-size", default=2.0 / 255, type=eval, help="perturb step size"
)
parser.add_argument(
"--test-num-steps", default=20, type=int, help="perturb number of steps"
)
# resume
parser.add_argument(
"--start-epoch", type=int, default=1, metavar="N", help="retrain from which epoch"
)
parser.add_argument(
"--resume_path", default="", type=str, help="directory of model for retraining"
)
# save checkpoint
parser.add_argument(
"--result-dir",
default="results/LBGAT",
help="directory of model for saving checkpoint",
)
parser.add_argument(
"--save-freq", "-s", default=1, type=int, metavar="N", help="save frequency"
)
parser.add_argument(
"--seed", type=int, default=1, metavar="S", help="random seed (default: 1)"
)
args = parser.parse_args()
if args.data == "CIFAR100":
NUM_CLASSES = 100
else:
NUM_CLASSES = 10
if args.seed is not None:
random_seed(args.seed)
args_path = (
"epoch"
+ str(args.epochs)
+ "_bs"
+ str(args.batch_size)
+ "_lr"
+ str(args.lr)
+ "_wd"
+ str(args.weight_decay)
+ "_eps"
+ str(args.epsilon)
+ "_norm"
+ str(args.norm)
+ "_beta"
+ str(args.beta)
)
checkpoint_path = os.path.join(
args.result_dir, args.data, args.arch, args_path, "checkpoints"
)
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
writer = SummaryWriter(
os.path.join(args.result_dir, args.data, args.arch, args_path, "tensorboard_logs")
)
logger = Logger(
os.path.join(args.result_dir, args.data, args.arch, args_path, "output.log")
)
best_nature_acc = 0
best_robust_acc = 0
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {"num_workers": 1, "pin_memory": True} if use_cuda else {}
# setup data loader
transform_train = transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]
)
transform_test = transforms.Compose(
[
transforms.ToTensor(),
]
)
trainset = getattr(datasets, args.data)(
root=args.data_path, train=True, download=True, transform=transform_train
)
testset = getattr(datasets, args.data)(
root=args.data_path, train=False, download=True, transform=transform_test
)
train_loader = torch.utils.data.DataLoader(
trainset, batch_size=args.batch_size, shuffle=True, **kwargs
)
test_loader = torch.utils.data.DataLoader(
testset, batch_size=args.test_batch_size, shuffle=False, **kwargs
)
def lbgat_loss(
model,
model_teacher,
x_natural,
y,
optimizer,
step_size=0.003,
epsilon=0.031,
perturb_steps=10,
beta=1.0,
distance="l_inf",
):
# define KL-loss
criterion_kl = nn.KLDivLoss(size_average=False)
mse = torch.nn.MSELoss()
ce = torch.nn.CrossEntropyLoss()
softmax = torch.nn.Softmax(dim=1)
model.eval()
batch_size = len(x_natural)
# generate adversarial example
x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cuda().detach()
if distance == "l_inf":
for _ in range(perturb_steps):
x_adv.requires_grad_()
with torch.enable_grad():
loss_kl = criterion_kl(
F.log_softmax(model(x_adv), dim=1),
F.softmax(model(x_natural), dim=1),
)
grad = torch.autograd.grad(loss_kl, [x_adv])[0]
x_adv = x_adv.detach() + step_size * torch.sign(grad.detach())
x_adv = torch.min(
torch.max(x_adv, x_natural - epsilon), x_natural + epsilon
)
x_adv = torch.clamp(x_adv, 0.0, 1.0)
elif distance == "l_2":
for _ in range(perturb_steps):
x_adv.requires_grad_()
with torch.enable_grad():
loss_kl = criterion_kl(
F.log_softmax(model(x_adv), dim=1),
F.softmax(model(x_natural), dim=1),
)
grad = torch.autograd.grad(loss_kl, [x_adv])[0]
for idx_batch in range(batch_size):
grad_idx = grad[idx_batch]
grad_idx_norm = l2_norm(grad_idx)
grad_idx /= grad_idx_norm + 1e-8
x_adv[idx_batch] = x_adv[idx_batch].detach() + step_size * grad_idx
eta_x_adv = x_adv[idx_batch] - x_natural[idx_batch]
norm_eta = l2_norm(eta_x_adv)
if norm_eta > epsilon:
eta_x_adv = eta_x_adv * epsilon / l2_norm(eta_x_adv)
x_adv[idx_batch] = x_natural[idx_batch] + eta_x_adv
x_adv = torch.clamp(x_adv, 0.0, 1.0)
else:
x_adv = torch.clamp(x_adv, 0.0, 1.0)
model.train()
x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False)
# zero gradient
optimizer.zero_grad()
# calculate robust loss
out_adv = model(x_adv)
out_natural = model(x_natural)
out = model_teacher(x_natural)
loss_mse = mse(out_adv, out) + ce(out, y)
loss_kl = (1.0 / out.size(0)) * criterion_kl(
F.log_softmax(out_adv, dim=1), F.softmax(out_natural, dim=1)
)
loss = loss_mse + beta * loss_kl
return loss
def train(args, model, model_teacher, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
# calculate robust loss
loss = lbgat_loss(
model=model,
model_teacher=model_teacher,
x_natural=data,
y=target,
optimizer=optimizer,
step_size=args.step_size,
epsilon=args.epsilon,
perturb_steps=args.num_steps,
beta=args.beta,
distance=args.norm,
)
loss.backward()
optimizer.step()
def adjust_learning_rate(optimizer, epoch):
"""decrease the learning rate"""
lr = args.lr
if epoch == 1:
lr = 0.02
if epoch >= 76:
lr = args.lr * 0.1
if epoch >= 91:
lr = args.lr * 0.01
if epoch >= 101:
lr = args.lr * 0.001
for param_group in optimizer.param_groups:
param_group["lr"] = lr
def _pgd_whitebox(
model, X, y, epsilon=0.031, step_size=0.003, num_steps=20, random=True
):
out = model(X)
err = (out.data.max(1)[1] != y.data).float().sum()
X_pgd = Variable(X.data, requires_grad=True)
if random:
random_noise = (
torch.FloatTensor(*X_pgd.shape).uniform_(-epsilon, epsilon).to(device)
)
X_pgd = Variable(X_pgd.data + random_noise, requires_grad=True)
for _ in range(num_steps):
opt = optim.SGD([X_pgd], lr=1e-3)
opt.zero_grad()
with torch.enable_grad():
loss = nn.CrossEntropyLoss()(model(X_pgd), y)
loss.backward()
eta = step_size * X_pgd.grad.data.sign()
X_pgd = Variable(X_pgd.data + eta, requires_grad=True)
eta = torch.clamp(X_pgd.data - X.data, -epsilon, epsilon)
X_pgd = Variable(X.data + eta, requires_grad=True)
X_pgd = Variable(torch.clamp(X_pgd, 0, 1.0), requires_grad=True)
err_pgd = (model(X_pgd).data.max(1)[1] != y.data).float().sum()
return err, err_pgd
def eval_adv_whitebox(
model, device, test_loader, epsilon, step_size, num_steps, random
):
"""
evaluate model by white-box attack
"""
model.eval()
robust_err_total = 0
natural_err_total = 0
count = 0
for data, target in test_loader:
data, target = data.to(device), target.to(device)
# pgd attack
X, y = Variable(data, requires_grad=True), Variable(target)
count += X.shape[0]
err_natural, err_robust = _pgd_whitebox(
model, X, y, epsilon, step_size, num_steps, random
)
robust_err_total += err_robust
natural_err_total += err_natural
nature_acc = 1.0 - (natural_err_total / count)
robust_acc = 1.0 - (robust_err_total / count)
return nature_acc, robust_acc
def main():
global best_nature_acc, best_robust_acc
logger.info(args)
# load model
model = getattr(models, args.arch)(num_classes=NUM_CLASSES)
model_teacher = getattr(models, args.arch_teacher)(num_classes=NUM_CLASSES)
# dataparallel
model = nn.DataParallel(model).to(device)
model_teacher = nn.DataParallel(model_teacher).to(device)
optimizer = optim.SGD(
[{"params": model.parameters()}, {"params": model_teacher.parameters()}],
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
if args.start_epoch > 1:
logger.info("Retrain from epoch %d", (args.start_epoch))
state_dict = torch.load(args.resume_path, map_location=device)
optimizer.load_state_dict(state_dict["opt_state_dict"])
model.load_state_dict(state_dict["model_state_dict"])
model_teacher.load_state_dict(state_dict["model_teacher_state_dict"])
logger.info("Epoch \t Time \t Test ACC \t Test Robust ACC")
for epoch in range(args.start_epoch, args.epochs + 1):
# adjust learning rate for SGD
adjust_learning_rate(optimizer, epoch)
# train
start_time = time.time()
train(args, model, model_teacher, device, train_loader, optimizer, epoch)
# eval
nature_acc, robust_acc = eval_adv_whitebox(
model,
device,
test_loader,
args.test_epsilon,
args.test_step_size,
args.test_num_steps,
True,
)
epoch_time = time.time() - start_time
logger.info(
"%d\t %d \t %.4f \t %.4f", epoch, epoch_time, nature_acc, robust_acc
)
writer.add_scalar("Test/Acc", float(nature_acc), epoch)
writer.add_scalar("Test/Robust Acc", float(robust_acc), epoch)
# Save checkpoint
is_best = nature_acc > best_nature_acc
best_nature_acc = max(nature_acc, best_nature_acc)
save_checkpoint(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"opt_state_dict": optimizer.state_dict(),
"nature_acc": float(nature_acc),
"robust_acc": float(robust_acc),
},
epoch,
is_best,
"nature",
save_path=checkpoint_path,
save_freq=args.save_freq,
)
is_best_robust = robust_acc > best_robust_acc
best_robust_acc = max(robust_acc, best_robust_acc)
save_checkpoint(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"opt_state_dict": optimizer.state_dict(),
"nature_acc": float(nature_acc),
"robust_acc": float(robust_acc),
},
epoch,
is_best_robust,
"robust",
save_path=checkpoint_path,
save_freq=args.save_freq,
)
logger.info("Best Nature ACC %.4f", best_nature_acc)
logger.info("Best Robust ACC %.4f", best_robust_acc)
writer.close()
if __name__ == "__main__":
main()