-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstack_features_dcn.py
391 lines (282 loc) · 17.6 KB
/
stack_features_dcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import pandas as pd
import json
import os
from tqdm import tqdm
import numpy as np
from xml.etree import ElementTree as ET
import lightgbm as lgb
from sklearn.model_selection import train_test_split
from sklearn.utils.class_weight import compute_class_weight
from sklearn.metrics import roc_auc_score
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModel
import json
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
import pickle
current_file_path = os.path.dirname(os.path.realpath(__file__))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_dict(file_path):
with open(file_path, 'rb') as f:
return pickle.load(f)
def partition_criteria(criteria):
lines = [line.strip() for line in criteria.lower().split('\n') if line.strip()]
inclusion_criteria, exclusion_criteria = [], []
# Use a flag to indicate whether we are currently reading inclusion or exclusion criteria
reading_inclusion = False
reading_exclusion = False
for line in lines:
# Check if the line is an inclusion or exclusion header
if 'inclusion criteria' in line:
reading_inclusion = True
reading_exclusion = False
continue
elif 'exclusion criteria' in line:
reading_inclusion = False
reading_exclusion = True
continue
if reading_inclusion:
inclusion_criteria.append(line)
elif reading_exclusion:
exclusion_criteria.append(line)
return inclusion_criteria, exclusion_criteria
def wrapper_get_sentence_embedding():
model_name = "dmis-lab/biobert-base-cased-v1.2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModel.from_pretrained(model_name).to(device)
def get_sentence_embedding(sentence):
# Encode the input string
inputs = tokenizer(sentence, return_tensors="pt", truncation=True, padding=True, max_length=512)
# Send inputs to the same device as model
inputs = {k: v.to(device) for k, v in inputs.items()}
# Get the output from BioBERT
with torch.no_grad(): # Disable gradient calculation for inference
outputs = model(**inputs)
# Obtain the embeddings for the [CLS] token
# The [CLS] token is used in BERT-like models to represent the entire sentence
cls_embedding = outputs.last_hidden_state[:, 0, :].squeeze().to('cpu')
return cls_embedding
return get_sentence_embedding
def pad_sentences(paragraphs, padding_size):
padded_paragraphs = []
mask_matrices = []
for p in paragraphs:
num_padding = padding_size - p.size(0)
if num_padding > 0:
padding = torch.zeros(num_padding, p.size(1))
padded_p = torch.cat([p, padding], dim=0)
else:
padded_p = p
# 1 for actual data, 0 for padding
mask = torch.cat([torch.ones(p.size(0)), torch.zeros(num_padding)], dim=0)
padded_paragraphs.append(padded_p)
mask_matrices.append(mask)
padded_paragraphs_tensor = torch.stack(padded_paragraphs)
mask_matrices_tensor = torch.stack(mask_matrices)
return padded_paragraphs_tensor, mask_matrices_tensor
from protocol_encode import protocol2feature, load_sentence_2_vec, get_sentence_embedding
def criteria2embedding(criteria_lst, padding_size):
sentence2vec = load_sentence_2_vec("data")
criteria_lst = [protocol2feature(criteria, sentence2vec) for criteria in criteria_lst] # list of tuple (inclusion_sentence_embedding list, exclusion_sentence_embedding list)
max_sentences = max(max(p[0].size(0), p[1].size(0)) for p in criteria_lst)
if max_sentences < padding_size:
print(f"Warning: padding size is larger than the maximum number of sentences in the data. Padding size: {padding_size}, Max sentences: {max_sentences}")
incl_criteria = [criteria[0][:padding_size] for criteria in criteria_lst]
incl_emb, incl_mask = pad_sentences(incl_criteria, padding_size)
excl_criteria = [criteria[1][:padding_size] for criteria in criteria_lst]
excl_emb, excl_mask = pad_sentences(excl_criteria, padding_size)
return incl_emb, incl_mask, excl_emb, excl_mask
def save_train_test_data(train_df, test_df):
print(f"Train size: {len(train_df)}, Test size: {len(test_df)}")
"""
dense feature: drugs_emb(768) diseases_emb(768) llm_drug_emb(768) llm_disease_emb(768)
incl_emb(32*768), incl_mask(32), excl_emb(32*768), excl_mask(32)
short_onehot(57)
= gender_vec + phase_vec + min_age_vec + max_age_vec + age_span_vec + inclusion_num_vec, exclusion_num_vec
+ sentence_num_vec + sentence_ratio_vec + min max age span + incl excl sentence_num ratio
sparse_feature = country_onehot, state_onehot, city_onehot
"""
y_train = train_df['label']
y_test = test_df['label']
print("Saving criteria embeddings...")
padding_size = 32
x_train_incl_emb, x_train_incl_mask, x_train_excl_emb, x_train_excl_mask = criteria2embedding(train_df['criteria'], padding_size)
x_test_incl_emb, x_test_incl_mask, x_test_excl_emb, x_test_excl_mask = criteria2embedding(test_df['criteria'], padding_size)
# print(x_train_incl_emb.shape, x_train_incl_mask.shape, x_train_excl_emb.shape, x_train_excl_mask.shape)
# print(x_test_incl_emb.shape, x_test_incl_mask.shape, x_test_excl_emb.shape, x_test_excl_mask.shape)
# print(x_test_excl_emb[0], x_test_excl_mask[0])
# breakpoint()
if not os.path.exists('data/data_dcn'):
os.makedirs('data/data_dcn')
torch.save(x_train_incl_emb, 'data/data_dcn/x_train_inc_emb.pt')
torch.save(x_train_incl_mask, 'data/data_dcn/x_train_inc_mask.pt')
torch.save(x_train_excl_emb, 'data/data_dcn/x_train_excl_emb.pt')
torch.save(x_train_excl_mask, 'data/data_dcn/x_train_excl_mask.pt')
torch.save(x_test_incl_emb, 'data/data_dcn/x_test_inc_emb.pt')
torch.save(x_test_incl_mask, 'data/data_dcn/x_test_inc_mask.pt')
torch.save(x_test_excl_emb, 'data/data_dcn/x_test_excl_emb.pt')
torch.save(x_test_excl_mask, 'data/data_dcn/x_test_excl_mask.pt')
trial_df = pd.concat([train_df, test_df], sort=False)
trial_df['age_span'] = np.where((trial_df['max_age'] != -1) & (trial_df['min_age'] != -1),
trial_df['max_age'] - trial_df['min_age'], -1)
trial_df['inclusion_num'] = trial_df['criteria'].apply(lambda x: len(partition_criteria(x)[0]))
trial_df['exclusion_num'] = trial_df['criteria'].apply(lambda x: len(partition_criteria(x)[1]))
trial_df['sentence_num'] = trial_df['criteria'].apply(lambda x: len(partition_criteria(x)[0]) + len(partition_criteria(x)[1]))
trial_df['ratio'] = trial_df['inclusion_num'] / (trial_df['exclusion_num'] + 1)
# Read LLM generated embeddings
llm_drug_emb_dict = torch.load('llm_emb/data_llm/drug/drug_emb.pt')
llm_disease_emb_dict = torch.load('llm_emb/data_llm/disease/disease_emb.pt')
gender_vecs = pickle.load(open('data/phase_vecs.pkl', 'rb'))
phase_vecs = pickle.load(open('data/phase_vecs.pkl', 'rb'))
min_age_vecs = pickle.load(open('data/min_age_vecs.pkl', 'rb'))
max_age_vecs = pickle.load(open('data/max_age_vecs.pkl', 'rb'))
age_span_vecs = pickle.load(open('data/age_span_vecs.pkl', 'rb'))
inclusion_num_vecs = pickle.load(open('data/inclusion_num_vecs.pkl', 'rb'))
exclusion_num_vecs = pickle.load(open('data/exclusion_num_vecs.pkl', 'rb'))
sentence_num_vecs = pickle.load(open('data/sentence_num_vecs.pkl', 'rb'))
sentence_ratio_vecs = pickle.load(open('data/ratio_vecs.pkl', 'rb'))
countries_onehot = pickle.load(open('data/countries_onehot.pkl', 'rb'))
states_onehot = pickle.load(open('data/states_onehot.pkl', 'rb'))
cities_onehot = pickle.load(open('data/cities_onehot.pkl', 'rb'))
get_sentence_embedding = wrapper_get_sentence_embedding()
dense_feature_list = []
short_onehot_list = []
country_onehot_list = []
state_onehot_list = []
city_onehot_list = []
# Normalize the values
min_age_min, min_age_max = trial_df['min_age'].min(), trial_df['min_age'].max()
trial_df['min_age_normalized'] = (trial_df['min_age'] - min_age_min) / (min_age_max - min_age_min)
max_age_min, max_age_max = trial_df['max_age'].min(), trial_df['max_age'].max()
trial_df['max_age_normalized'] = (trial_df['max_age'] - max_age_min) / (max_age_max - max_age_min)
age_span_min, age_span_max = trial_df['age_span'].min(), trial_df['age_span'].max()
trial_df['age_span_normalized'] = (trial_df['age_span'] - age_span_min) / (age_span_max - age_span_min)
inclusion_num_min, inclusion_num_max = trial_df['inclusion_num'].min(), trial_df['inclusion_num'].max()
trial_df['inclusion_num_normalized'] = (trial_df['inclusion_num'] - inclusion_num_min) / (inclusion_num_max - inclusion_num_min)
exclusion_num_min, exclusion_num_max = trial_df['exclusion_num'].min(), trial_df['exclusion_num'].max()
trial_df['exclusion_num_normalized'] = (trial_df['exclusion_num'] - exclusion_num_min) / (exclusion_num_max - exclusion_num_min)
sentence_num_min, sentence_num_max = trial_df['sentence_num'].min(), trial_df['sentence_num'].max()
trial_df['sentence_num_normalized'] = (trial_df['sentence_num'] - sentence_num_min) / (sentence_num_max - sentence_num_min)
ratio_min, ratio_max = trial_df['ratio'].min(), trial_df['ratio'].max()
trial_df['ratio_normalized'] = (trial_df['ratio'] - ratio_min) / (ratio_max - ratio_min)
print("Saving other features embeddings...")
for row_idx, trial_row in tqdm(trial_df.iterrows(), total=len(trial_df)):
nctid = trial_row['nctid']
criteria = trial_row['criteria']
# Split the string by ';' and remove spaces for each string in the list
drugs = [drug.strip() for drug in trial_row['drugs'].split(';')]
diseases = [disease.strip() for disease in trial_row['diseases'].split(';')]
# dense features
drugs_emb = torch.mean(torch.stack([get_sentence_embedding(drug) for drug in drugs]), dim=0)
drugs_llm_emb = torch.mean(torch.stack([llm_drug_emb_dict[drug] for drug in drugs]), dim=0)
diseases_emb = torch.mean(torch.stack([get_sentence_embedding(disease) for disease in diseases]), dim=0)
diseases_llm_emb = torch.mean(torch.stack([llm_disease_emb_dict[disease] for disease in diseases]), dim=0)
gender_vec = torch.tensor(gender_vecs[nctid], dtype=torch.float32)
phase_vec = torch.tensor(phase_vecs[nctid], dtype=torch.float32)
min_age_vec = torch.tensor(min_age_vecs[nctid], dtype=torch.float32)
max_age_vec = torch.tensor(max_age_vecs[nctid], dtype=torch.float32)
age_span_vec = torch.tensor(age_span_vecs[nctid], dtype=torch.float32)
inclusion_num_vec = torch.tensor(inclusion_num_vecs[nctid], dtype=torch.float32)
exclusion_num_vec = torch.tensor(exclusion_num_vecs[nctid], dtype=torch.float32)
sentence_num_vec = torch.tensor(sentence_num_vecs[nctid], dtype=torch.float32)
sentence_ratio_vec = torch.tensor(sentence_ratio_vecs[nctid], dtype=torch.float32)
min_age = torch.tensor([trial_row['min_age_normalized']])
max_age = torch.tensor([trial_row['max_age_normalized']])
age_span = torch.tensor([trial_row['age_span_normalized']])
inclusion_num = torch.tensor([trial_row['inclusion_num_normalized']])
exclusion_num = torch.tensor([trial_row['exclusion_num_normalized']])
sentence_num = torch.tensor([trial_row['sentence_num_normalized']])
ratio = torch.tensor([trial_row['ratio_normalized']])
# sparse features
country_onehot = torch.tensor(countries_onehot[nctid], dtype=torch.int)
state_onehot = torch.tensor(states_onehot[nctid], dtype=torch.int)
city_onehot = torch.tensor(cities_onehot[nctid], dtype=torch.int)
# country, state, city vector add index for none value, add prefix for padding
# example: [1, 0, 1, 0, 0] -> [0, 0, 1, 0, 1, 0, 0]
# [0, 0, 0, 0, 0] -> [0, 1, 0, 0, 0, 0, 0]
def process_onehot(onehot_tensor):
all_zero = torch.all(onehot_tensor == 0)
if all_zero:
prefix = torch.tensor([0, 1], dtype=torch.int)
else:
prefix = torch.tensor([0, 0], dtype=torch.int)
processed_tensor = torch.cat((prefix, onehot_tensor), dim=0)
return processed_tensor
#print idx where there is 1 in state_onehot
# state_indices = torch.nonzero(state_onehot).squeeze()
# print(state_indices)
country_onehot = process_onehot(country_onehot)
state_onehot = process_onehot(state_onehot)
city_onehot = process_onehot(city_onehot)
# state_indices = torch.nonzero(state_onehot).squeeze()
# print(state_indices)
# breakpoint()
# Append all the features to the lists
dense_feature_list.append(torch.cat((drugs_emb, diseases_emb, drugs_llm_emb, diseases_llm_emb), dim=0))
short_onehot_list.append(torch.cat((gender_vec, phase_vec, min_age_vec, max_age_vec, age_span_vec,
inclusion_num_vec, exclusion_num_vec, sentence_num_vec, sentence_ratio_vec,
min_age, max_age, age_span, inclusion_num, exclusion_num, sentence_num, ratio), dim=0))
country_onehot_list.append(country_onehot)
state_onehot_list.append(state_onehot)
city_onehot_list.append(city_onehot)
dense_feature = torch.stack(dense_feature_list)
short_onehot = torch.stack(short_onehot_list)
sparse_feature_country = torch.stack(country_onehot_list)
sparse_feature_state = torch.stack(state_onehot_list)
sparse_feature_city = torch.stack(city_onehot_list)
#split back to train and test
x_train_dense = dense_feature[:len(train_df)]
x_test_dense = dense_feature[len(train_df):]
x_train_short_onehot = short_onehot[:len(train_df)]
x_test_short_onehot = short_onehot[len(train_df):]
x_train_sparse_country = sparse_feature_country[:len(train_df)]
x_test_sparse_country = sparse_feature_country[len(train_df):]
x_train_sparse_state = sparse_feature_state[:len(train_df)]
x_test_sparse_state = sparse_feature_state[len(train_df):]
x_train_sparse_city = sparse_feature_city[:len(train_df)]
x_test_sparse_city = sparse_feature_city[len(train_df):]
torch.save(x_train_dense, 'data/data_dcn/x_train_dense.pt')
torch.save(x_test_dense, 'data/data_dcn/x_test_dense.pt')
torch.save(x_train_short_onehot, 'data/data_dcn/x_train_short_onehot.pt')
torch.save(x_test_short_onehot, 'data/data_dcn/x_test_short_onehot.pt')
torch.save(x_train_sparse_country, 'data/data_dcn/x_train_sparse_country.pt')
torch.save(x_test_sparse_country, 'data/data_dcn/x_test_sparse_country.pt')
torch.save(x_train_sparse_state, 'data/data_dcn/x_train_sparse_state.pt')
torch.save(x_test_sparse_state, 'data/data_dcn/x_test_sparse_state.pt')
torch.save(x_train_sparse_city, 'data/data_dcn/x_train_sparse_city.pt')
torch.save(x_test_sparse_city, 'data/data_dcn/x_test_sparse_city.pt')
torch.save(y_train, 'data/data_dcn/y_train.pt')
torch.save(y_test, 'data/data_dcn/y_test.pt')
def load_data():
x_train_inc_emb = torch.load(f'data/data_dcn/x_train_inc_emb.pt')
x_train_inc_mask = torch.load(f'data/data_dcn/x_train_inc_mask.pt')
x_train_excl_emb = torch.load(f'data/data_dcn/x_train_excl_emb.pt')
x_train_excl_mask = torch.load(f'data/data_dcn/x_train_excl_mask.pt')
x_test_inc_emb = torch.load(f'data/data_dcn/x_test_inc_emb.pt')
x_test_inc_mask = torch.load(f'data/data_dcn/x_test_inc_mask.pt')
x_test_excl_emb = torch.load(f'data/data_dcn/x_test_excl_emb.pt')
x_test_excl_mask = torch.load(f'data/data_dcn/x_test_excl_mask.pt')
x_train_dense = torch.load(f'data/data_dcn/x_train_dense.pt')
x_test_dense = torch.load(f'data/data_dcn/x_test_dense.pt')
x_train_short_onehot = torch.load(f'data/data_dcn/x_train_short_onehot.pt')
x_test_short_onehot = torch.load(f'data/data_dcn/x_test_short_onehot.pt')
x_train_sparse_country = torch.load(f'data/data_dcn/x_train_sparse_country.pt')
x_test_sparse_country = torch.load(f'data/data_dcn/x_test_sparse_country.pt')
x_train_sparse_state = torch.load(f'data/data_dcn/x_train_sparse_state.pt')
x_test_sparse_state = torch.load(f'data/data_dcn/x_test_sparse_state.pt')
x_train_sparse_city = torch.load(f'data/data_dcn/x_train_sparse_city.pt')
x_test_sparse_city = torch.load(f'data/data_dcn/x_test_sparse_city.pt')
y_train = torch.load(f'data/data_dcn/y_train.pt')
y_test = torch.load(f'data/data_dcn/y_test.pt')
return x_train_inc_emb, x_train_inc_mask, x_train_excl_emb, x_train_excl_mask, x_test_inc_emb,\
x_test_inc_mask, x_test_excl_emb, x_test_excl_mask, x_train_dense, x_test_dense, x_train_short_onehot,\
x_test_short_onehot, x_train_sparse_country, x_test_sparse_country, x_train_sparse_state, x_test_sparse_state,\
x_train_sparse_city, x_test_sparse_city, y_train, y_test
if __name__ == '__main__':
train_df = pd.read_csv(f'../data_llm/enrollment_timefiltered_train.csv', sep='\t')
test_df = pd.read_csv(f'../data_llm/enrollment_timefiltered_test.csv', sep='\t')
save_train_test_data(train_df, test_df)