-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
82 lines (67 loc) · 2.55 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import pprint
import argparse
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torch.backends.cudnn as cudnn
import init_path
from utils.logger import Logger
from scheduler.virat_model import ViratModel as Model
from config.virat_cfg import ViratConfig as Config
from data.data_loader import customer_data_loader
from networks.resnet_3d import *
def parse_args():
parser = argparse.ArgumentParser(description='Train keypoints network')
# general
parser.add_argument('--cfg', default='./experiments/demo_config.yaml',
help='experiment configure file name',
# required=True,
type=str)
parser.add_argument('opts',
help="Modify cfg options using the command-line",
default=None,
nargs=argparse.REMAINDER)
# philly
parser.add_argument('--modelDir',
help='model directory',
type=str,
default='')
parser.add_argument('--logDir',
help='log directory',
type=str,
default='')
parser.add_argument('--dataDir',
help='data directory',
type=str,
default='')
parser.add_argument('--prevModelDir',
help='prev Model directory',
type=str,
default='')
args = parser.parse_args()
return args
def main():
args = parse_args()
cfg = Config(args).getcfg()
exp_suffix = os.path.basename(args.cfg).split('.')[0]
logger = Logger(os.path.join(cfg.LOG_DIR, '_'.join([cfg.MODEL.NAME, exp_suffix, cfg.TRAIN.OPTIMIZER, str(cfg.TRAIN.LR)])))
logger.log(pprint.pformat(args))
logger.log(cfg)
# cudnn related setting
cudnn.benchmark = cfg.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED
# define
train_loader = customer_data_loader(cfg, 'train')
val_loader = customer_data_loader(cfg, 'validation')
net = eval('networks.'+cfg.MODEL.NAME+'.get_net')(cfg, is_train=cfg.IS_TRAIN)
model = Model(net, cfg=cfg, logger=logger, suffix=exp_suffix, loss_type='KL')
if cfg.IS_TRAIN:
model.train(train_loader, val_loader=val_loader)
else:
model.test(train_loader, epoch=1, is_val=False)
if __name__ == '__main__':
main()