-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerator.py
138 lines (99 loc) · 4.82 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import random
import logging
logging.basicConfig(filename=os.path.join(os.getcwd(), 'records.log'), level=logging.DEBUG)
import numpy as np
from functools import reduce
from operator import add
from network import Network
class Generator():
def __init__(self, nn_param, retain=0.4, random_select=0.1, mutate_chance=0.2):
self.mutate_chance = mutate_chance
self.random_select = random_select
self.retain = retain
self.nn_param = nn_param
def create_random_population(self, count):
networks = []
for _ in range(0, count):
layers = []
nb_layers = random.choice(self.nn_param["nb_layers"])
for l in range(nb_layers):
nb_neurons = random.choice(self.nn_param["nb_neurons"])
activation = random.choice(self.nn_param["activation"])
layers.append([nb_neurons, activation])
optimizer = random.choice(self.nn_param["optimizer"])
network = Network(layers, optimizer)
networks.append(network)
return networks
@staticmethod
def fitness(network):
return network.accuracy
def grade(self, pop):
summed = reduce(add, (self.fitness(network) for network in pop))
return summed / float((len(pop)))
def breed(self, mother, father):
children = []
for _ in range(2):
child = {}
min_layers = min([mother.nb_layers, father.nb_layers])
max_layers = max([mother.nb_layers, father.nb_layers])
nb_layers = np.random.randint(min_layers, max_layers+1, size=(1))[0]
layers = []
for i in range(nb_layers):
if i < mother.nb_layers and i < father.nb_layers:
layers.append(random.choice([mother.layers[i], father.layers[i]]))
elif i < mother.nb_layers:
layers.append(random.choice([mother.layers[i], mother.layers[i]]))
elif i < father.nb_layers:
layers.append(random.choice([father.layers[i], father.layers[i]]))
optimizer = random.choice([mother.optimizer, father.optimizer])
network = Network(layers, optimizer)
network.create_set(child)
if self.mutate_chance > random.random():
network = self.mutate(network)
children.append(network)
return children
def mutate(self, network, change_nb_layers=0.3, change_layers=0.7, change=0.5):
if change_nb_layers > random.random():
new_nb_layers = random.choice(self.nn_param["nb_layers"])
if new_nb_layers > network.nb_layers and (network.nb_layers+1) <= max(self.nn_param["nb_layers"]):
position = np.random.randint(0, max(self.nn_param["nb_layers"])+1, size=(1))[0]
network.layers.insert(position, [random.choice(self.nn_param["nb_neurons"]), random.choice(self.nn_param["activation"])])
network.nb_layers = len(network.layers)
elif new_nb_layers < network.nb_layers and (network.nb_layers-1) >= min(self.nn_param["nb_layers"]):
position = np.random.randint(0, network.nb_layers, size=(1))[0]
del network.layers[position]
network.nb_layers = len(network.layers)
layers_for_change = []
if change_layers > random.random():
nb_layers = np.random.randint(0, network.nb_layers, size=(network.nb_layers))
layers_for_change = set(nb_layers)
for nb_layer in layers_for_change:
if change > random.random():
network.layers[nb_layer][0] = random.choice(self.nn_param["nb_neurons"])
if change > random.random():
network.layers[nb_layer][1] = random.choice(self.nn_param["activation"])
return network
def evolve(self, pop):
graded = [(self.fitness(network), network) for network in pop]
graded = [x[1] for x in sorted(graded, key=lambda x: x[0])]
retain_length = int(len(graded)*self.retain)
parents = graded[:retain_length]
for individual in graded[retain_length:]:
if self.random_select > random.random():
parents.append(individual)
parents_length = len(parents)
desired_length = len(pop) - parents_length
children = []
while len(children) < desired_length:
male = random.randint(0, parents_length-1)
female = random.randint(0, parents_length-1)
if male != female:
male = parents[male]
female = parents[female]
babies = self.breed(male, female)
for baby in babies:
if len(children) < desired_length:
children.append(baby)
parents.extend(children)
return parents