-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhalusum_eval.py
313 lines (268 loc) · 16.7 KB
/
halusum_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Ref: https://github.com/kojima-takeshi188/zero_shot_cot
import re
import os
import json
import random
import torch
import numpy as np
import transformers
from tqdm import tqdm, trange
import argparse
from collections import defaultdict, Counter
import glob
import sys
import ssl
import urllib.request
import zipfile
import tiktoken
from dola import DoLa
transformers.logging.set_verbosity(40)
DEBUG = False
def num_tokens_from_message(message, model="davinci"):
encoding = tiktoken.encoding_for_model(model)
num_tokens = len(encoding.encode(message))
return num_tokens
def truncate_message(prompt1, prompt2, model="davinci"):
if num_tokens_from_message(prompt1 + prompt2, model) > 2033:
truncation_length = 2033 - num_tokens_from_message(prompt2)
while num_tokens_from_message(prompt1) > truncation_length:
prompt1 = " ".join(prompt1.split()[:-1])
prompt = prompt1 + prompt2
return prompt
demo_keys = []
def load_jsonl(file_path, pondering=None, keys_path=None):
global demo_keys
if args.keys_path is not None:
with open(args.keys_path, "r", encoding="utf-8") as f:
key_words = json.load(f)
list_data_dict = {}
with open(file_path, 'r', encoding="utf-8") as f:
data = []
for line in f:
data.append(json.loads(line))
data = data[:1000]
candicates = ["hallucinated_summary", "right_summary"]
ground_truths = ["Yes", "No"]
for j in range(len(candicates)):
list_data_dict[j] = []
for idx in range(len(data)):
response = "\n#Summary#: " + data[idx][candicates[j]] + "\n#Your Judgement#:"
ground_truth = ground_truths[j]
new_item = dict(
context="#Document#: " + data[idx]["document"],
response=response,
answer=ground_truth
)
if pondering == 'pause':
new_item['response'] = "\n#Pondering#: " + "." * args.pause_num + response
elif pondering == 'repeat':
new_item['response'] = "\n#Pondering#: " + data[idx]["document"] + response
elif pondering == 'hard':
if keys_path is not None:
demo_keys = key_words[:3]
new_item['response'] = "\n#Pondering#: " + key_words[3 + idx] + response
elif pondering == 'hard-prepend':
if keys_path is not None:
demo_keys = key_words[:3]
new_item['context'] = "#Pondering#: " + key_words[3 + idx] + "\n" + new_item['context']
list_data_dict[j].append(new_item)
return list_data_dict
def dump_jsonl(data, output_path, append=False):
"""
Write list of objects to a JSON lines file.
"""
mode = 'a+' if append else 'w'
with open(output_path, mode, encoding='utf-8') as f:
json_record = json.dumps(data, ensure_ascii=False)
f.write(json_record + '\n')
def create_demo_text(pondering=None):
prompt, context, response, answer = [], [], [], []
prompt.append("You are trying to determine if the summary is factual but some information cannot be directly inferred or entailed from the document.")
context.append("#Document#: The panther chameleon was found on Monday by a dog walker in the wooded area at Marl Park. It had to be put down after X-rays showed all of its legs were broken and it had a deformed spine. RSPCA Cymru said it was an \"extremely sad example of an abandoned and neglected exotic pet\". Inspector Selina Chan said: \"It is a possibility that the owners took on this animal but were unable to provide the care he needs and decided to release him to the wild. \"We are urging potential owners of exotic animals to thoroughly research what is required in the care of the particular species before taking one on. \"Potential owners need to make sure they can give their animal the environment it needs and they have the facilities, time, financial means and long-term commitment to maintain a good standard of care, as required under the Animal Welfare Act 2006.\" She added it was illegal to release non-native species into the wild.")
response.append("#Summary#: A chameleon that was found in a Cardiff park has been put down after being abandoned and neglected by its owners.")
answer.append("#Your Judgement#: Yes")
prompt.append("You are trying to determine if there exists some non-factual and incorrect information in the summary. ")
context.append("#Document#: The city was brought to a standstill on 15 December last year when a gunman held 18 hostages for 17 hours. Family members of victims Tori Johnson and Katrina Dawson were in attendance. Images of the floral tributes that filled the city centre in the wake of the siege were projected on to the cafe and surrounding buildings in an emotional twilight ceremony. Prime Minister Malcolm Turnbull gave an address saying a \"whole nation resolved to answer hatred with love\". \"Testament to the spirit of Australians is that with such unnecessary, thoughtless tragedy, an amazing birth of mateship, unity and love occurs. Proud to be Australian,\" he said. How the Sydney siege unfolded New South Wales Premier Mike Baird has also announced plans for a permanent memorial to be built into the pavement in Martin Place. Clear cubes containing flowers will be embedded into the concrete and will shine with specialised lighting. It is a project inspired by the massive floral tributes that were left in the days after the siege. \"Something remarkable happened here. As a city we were drawn to Martin Place. We came in shock and in sorrow but every step we took was with purpose,\" he said on Tuesday.")
response.append("#Summary#: Crowds have gathered in Sydney's Martin Place to honour the victims of the Lindt cafe siege, one year on.")
answer.append("#Your Judgement#: No")
prompt.append("You are trying to determine if there is a factual contradiction between the summary and the document.")
context.append("#Document#: Christopher Huxtable, 34, from Swansea, had been missing since the collapse in February. His body was found on Wednesday and workers who carried out the search formed a guard of honour as it was driven from the site in the early hours of the morning. Ken Cresswell, 57, and John Shaw, 61, both from Rotherham, remain missing. The body of a fourth man, Michael Collings, 53, from Brotton, Teesside, was previously recovered from the site. Swansea East MP Carolyn Harris, who has been involved with the family since the incident, said they still did not know all the facts about the collapse. She said: \"I feel very sad. My heart and my prayers go out to the family who have waited desperately for Christopher's body to be found. They can finally have closure, and say goodbye to him and grieve his loss. \"But let's not forget that there's two other families who are still waiting for their loved ones to be returned.\" The building was due for demolition when it partially collapsed in February.")
response.append("#Summary#: The body of a man whose body was found at the site of the Swansea Bay Power Station collapse has been removed from the site.")
answer.append("#Your Judgement#: Yes")
# Concatenate demonstration examples ...
demo_text = "I want you act as a summary judge. Given a document and a summary, your objective is to determine if the provided summary contains non-factual or hallucinated information. You SHOULD give your judgement based on the following hallucination types and the world knowledge.\n\n"
for i in range(len(context)):
if pondering is None:
demo_text += prompt[i] + "\n" + context[i] + "\n" + \
response[i] + "\n" + answer[i] + "\n\n"
elif pondering == 'pause':
demo_text += prompt[i] + "\n" + context[i] + "\n#Pondering#: " + "." * args.pause_num + "\n" + \
response[i] + "\n" + answer[i] + "\n\n"
elif pondering == 'repeat':
demo_text += prompt[i] + "\n" + context[i] + "\n#Pondering#: " + question[i] + "\n" + \
response[i] + "\n" + answer[i] + "\n\n"
elif pondering == 'hard':
demo_text += prompt[i] + "\n" + context[i] + "\n#Pondering#: " + demo_keys[i] + "\n" + \
response[i] + "\n" + answer[i] + "\n\n"
elif pondering == 'hard-prepend':
demo_text += prompt[i] + "\n#Pondering#: " + demo_keys[i] + "\n" + context[i] + "\n" + \
response[i] + "\n" + answer[i] + "\n\n"
return demo_text
def build_prompt(context, response, pondering=None):
demo = create_demo_text(pondering)
prompt = demo + context
input_text_prompt = truncate_message(prompt, response)
return input_text_prompt
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, default="huggyllama/llama-7b")
parser.add_argument("--num-gpus", type=str, default="1")
parser.add_argument("--max_gpu_memory", type=int, default=27)
parser.add_argument("--device", type=str, choices=["cuda", "cpu"], default="cuda")
parser.add_argument("--data-path", type=str, default="./strqa")
parser.add_argument("--output-path", type=str, default="./strqa_result")
# parallel mode (split the dataset into multiple parts, inference by separate processes)
parser.add_argument("--early-exit-layers", type=str, default="-1")
parser.add_argument("--parallel", action="store_true")
parser.add_argument("--total-shard", type=int, default=8)
parser.add_argument("--shard-id", type=int, default=None)
parser.add_argument("--max-new-tokens", type=int, default=256)
parser.add_argument("--top_p", type=float, default=0.95)
parser.add_argument("--top_k", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.9)
parser.add_argument("--repetition_penalty", type=float, default=None)
parser.add_argument("--relative_top", type=float, default=0.1)
parser.add_argument("--do_sample", action="store_true")
parser.add_argument("--do_shuffle", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--retry", type=int, default=1)
parser.add_argument("--keys-path", type=str, default=None)
parser.add_argument("--pondering", type=str, default=None)
parser.add_argument("--pause-num", type=int, default=3)
parser.add_argument("--alpha", type=float, default=10)
args = parser.parse_args()
model_name = args.model_name
num_gpus = args.num_gpus
device = args.device
# set seed
set_seed(args.seed)
# load your finetuned model (saved as xxx.ckpt)
# in yaml file federate.save_to
# Get test file
fp = args.data_path
if not os.path.exists(fp):
raise ValueError(f"Test file {fp} does not exist.")
list_data_dict = load_jsonl(fp)
if args.pondering is not None:
list_data_dict_keys = load_jsonl(fp, pondering=args.pondering, keys_path=args.keys_path)
llm = DoLa(model_name, device, num_gpus, args.max_gpu_memory)
stop_word_list = ["#Document#:", "#Pondering#:"]
llm.set_stop_words(stop_word_list)
early_exit_layers = [int(x) for x in args.early_exit_layers.split(',')]
if len(early_exit_layers) == 1:
print("MODE: naive decoding from the last layer", flush=True)
mode = "baseline"
mature_layer = None
premature_layer = None
candidate_premature_layers = None
if args.repetition_penalty is None:
args.repetition_penalty = 1
elif len(early_exit_layers) == 2:
print(f"MODE: DoLa-static decoding with mature layer: {early_exit_layers[1]} and premature layer: {early_exit_layers[0]}")
mode = "dola-static"
mature_layer = early_exit_layers[1]
premature_layer = early_exit_layers[0]
candidate_premature_layers = None
if args.repetition_penalty is None:
args.repetition_penalty = 1.2
else:
print(f"MODE: DoLa decoding with mature layer: {early_exit_layers[-1]} and premature layers: {early_exit_layers[:-1]}")
mode = "dola"
mature_layer = early_exit_layers[-1]
premature_layer = None
candidate_premature_layers = early_exit_layers[:-1]
premature_layer_dist = {l:0 for l in candidate_premature_layers}
if args.repetition_penalty is None:
args.repetition_penalty = 1.2
generate_kwargs = dict(max_new_tokens=args.max_new_tokens,
do_sample=args.do_sample,
top_p=args.top_p,
top_k=args.top_k,
temperature=args.temperature,
repetition_penalty=args.repetition_penalty,
mode=mode,
mature_layer=mature_layer,
premature_layer=premature_layer,
candidate_premature_layers=candidate_premature_layers,
relative_top=args.relative_top,
pondering=args.pondering,
alpha=args.alpha)
output_path = args.output_path
candicates = ["hallucinated_summary", "right_summary"]
corrects ,incorrects = [], []
for j in range(len(candicates)):
print("="*20 + candicates[j] + "="*20)
correct = 0
incorrect = 0
for idx in tqdm(range(len(list_data_dict[j]))):
sample = list_data_dict[j][idx]
if args.pondering is None:
input_text_keys = None
else:
sample_keys = list_data_dict_keys[j][idx]
input_text_keys = build_prompt(sample_keys['context'], sample_keys['response'], pondering=args.pondering)
input_text = build_prompt(sample['context'], sample['response'])
model_completion, c_dist = llm.generate(input_text, input_text_keys=input_text_keys, **generate_kwargs)
for stop_word in stop_word_list:
length_to_remove = len(stop_word)
if model_completion[-length_to_remove:] == stop_word:
model_completion = model_completion[:-length_to_remove]
model_completion = model_completion.strip()
ans = model_completion.replace(".", "")
if mode == "dola":
for k, v in c_dist.items():
premature_layer_dist[k] += v
if ("Yes" in ans and "No" in ans) or ("Yes" not in ans and "No" not in ans):
gen = {"document": sample['context'], "summary": sample['response'], "ground_truth": sample['answer'], "judgement": "failed!"}
dump_jsonl(gen, output_path, append=True)
incorrect += 1
print('sample {} fails......'.format(idx))
continue
elif "Yes" in ans:
if ans != "Yes":
ans = "Yes"
gen = {"document": sample['context'], "summary": sample['response'], "ground_truth": sample['answer'], "judgement": ans}
elif "No" in ans:
if ans != "No":
ans = "No"
gen = {"document": sample['context'], "summary": sample['response'], "ground_truth": sample['answer'], "judgement": ans}
else:
gen = None
assert (gen is not None)
if sample['answer'] == ans:
correct += 1
else:
incorrect += 1
print('sample {} success......'.format(idx))
dump_jsonl(gen, output_path, append=True)
print('{}: {} correct samples, {} incorrect samples, Accuracy: {}'.format(candicates[j], correct, incorrect, correct / len(list_data_dict[j])))
corrects.append(correct)
incorrects.append(incorrect)
print("=" * 50)
correct, incorrect, total = 0, 0, 0
for j in range(len(candicates)):
print('{}: {} correct samples, {} incorrect samples, Accuracy: {}'.format(candicates[j], corrects[j], incorrects[j], corrects[j] / len(list_data_dict[j])))
correct += corrects[j]
incorrect += incorrects[j]
total += len(list_data_dict[j])
print('Total: {} correct samples, {} incorrect samples, acc_H {}, acc_A: {}'.format(correct, incorrect, 2*corrects[0]*corrects[1]/(correct*len(list_data_dict[0])), correct / total))
precision = corrects[0] / (corrects[0] + incorrects[1])
recall = corrects[0] / len(list_data_dict[0])
F1 = (2 * precision * recall) / (precision + recall)
print('Precision: {}, recall: {}, F1: {}'.format(precision, recall, F1))