-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathstudy.py
749 lines (699 loc) · 24.6 KB
/
study.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
# coding: utf-8
###
# @file study.py
# @author Sébastien Rouault <[email protected]>
#
# @section LICENSE
#
# Copyright © 2019-2021 École Polytechnique Fédérale de Lausanne (EPFL).
# See LICENSE file.
#
# @section DESCRIPTION
#
# Helper module for training/evaluation data handling and plotting.
# To be used as a library, e.g. with the interactive interpreter.
###
import tools
if __name__ == "__main__":
raise tools.UserException(f"Module {__file__!r} is not to be used as the main module")
import aggregators
import experiments
import atexit
import json
import math
import matplotlib
import matplotlib.pyplot as plt
import numpy
import pathlib
import pandas
import threading
# Change common font for the default LaTeX one
plt.rcParams["font.family"] = "Latin Modern Roman"
plt.rcParams["font.size"] = 16
# Enable automatic layout adjustments
plt.rcParams["figure.autolayout"] = True
# ---------------------------------------------------------------------------- #
# Common GTK main loop
try:
import gi
gi.require_version("Gtk", "3.0")
from gi.repository import Gtk, Gdk, GLib
gtk_lazy_lock = threading.Lock()
gtk_lazy_main = None
def gtk_run(closure):
""" Run a closure in the GTK main loop, lazy start it.
Args:
closure Closure to run in the main loop
"""
global gtk_lazy_lock
global gtk_lazy_main
# GTK's main event loop
def gtk_main():
# Main loop
atexit.register(Gtk.main_quit)
Gtk.main()
# Lazy-start the loop if necessary
with gtk_lazy_lock:
if gtk_lazy_main is None:
thread = threading.Thread(target=gtk_main, name="gtk_main", daemon=True)
thread.start()
gtk_lazy_main = thread
# Submit the job to the main loop
GLib.idle_add(closure)
except Exception as err:
def gtk_run(closure):
""" Sink in case GTK cannot be used.
Args:
closure Ignored parameter
"""
tools.warning(f"GTK 3.0 is unavailable: {err}")
# ---------------------------------------------------------------------------- #
# Data frame columns selection helper
def select(data, *only_columns):
""" "Intelligently" select columns from a data frame.
Args:
data Session or DataFrame to select
... Only columns to select, empty for all
Returns:
(Sub-)dataframe, by reference
"""
global Session
# Unwrap data frame from session
if isinstance(data, Session):
data = data.data
# Fast path
if len(only_columns) == 0:
return data
# Intelligent selection
columns = list()
for only_column in only_columns:
only_column = only_column.lower()
for column in data.columns:
if column not in columns and only_column in column.lower():
columns.append(column)
return data[columns]
def discard(data, *only_columns):
""" "Intelligently" discard columns from a data frame.
Args:
... Only columns to discard, empty for none
Returns:
(Sub-)dataframe, by reference
"""
# Fast path
if len(only_columns) == 0:
return data
# Intelligent discarding
data = data[:]
for only_column in only_columns:
only_column = only_column.lower()
for column in data.columns:
if only_column in column.lower():
del data[column]
return data
# ---------------------------------------------------------------------------- #
# DataFrame display (GTK-based)
class _DataFrameDisplayWindow(Gtk.Window):
""" Display the given data frame in a window.
"""
@staticmethod
def to_string(x):
""" Convert data to string, special treatment for floats.
Args:
x Input data
Returns:
Converted data to string
"""
if type(x) is float:
return f"{x:e}"
return str(x).strip()
def __init__(self, data, title="Display data"):
""" Initialize the display window.
Args:
data Data to display
title Title to use
"""
super().__init__(title=title)
# Make and fill list store
store = Gtk.ListStore(*([str] * (len(data.columns) + 1)))
for row in data.itertuples():
store.append(list(self.to_string(x) for x in row))
# Make the associated tree view
view = Gtk.TreeView(store)
columns = list(data.columns)
columns.insert(0, data.index.name)
for i, cname in enumerate(columns):
renderer = Gtk.CellRendererText()
column = Gtk.TreeViewColumn(cname, renderer, text=i)
view.append_column(column)
# Make a scrolled window containing the tree view
scrolled = Gtk.ScrolledWindow()
scrolled.set_hexpand(True)
scrolled.set_vexpand(True)
scrolled.add(view)
self.add(scrolled)
# Finalize window
self.set_default_size(800, 600)
def display(data, **kwargs):
""" GTK-based display of a data frame.
Args:
data Data frame to display
... Forwarded keyword-arguments
"""
# Display given data
gtk_run(lambda: _DataFrameDisplayWindow(data, **kwargs).show_all())
# ---------------------------------------------------------------------------- #
# Training/evaluation data collection class
class Session:
""" Training/evaluation data collection class.
"""
def __init__(self, path_results):
""" Load the data from a training/evaluation result directory.
Args:
path_results Path-like to the result directory to load
"""
# Conversion to path
if not isinstance(path_results, pathlib.Path):
path_results = pathlib.Path(path_results)
# Ensure directory exist
if not path_results.exists():
raise tools.UserException(f"Result directory {str(path_results)} cannot be accessed or does not exist")
# Load configuration string
path_config = path_results / "config"
try:
data_config = path_config.read_text().strip()
except Exception as err:
tools.warning(f"Result directory {str(path_results)}: unable to read configuration ({err})")
data_config = None
# Load configuration json
path_json = path_results / "config.json"
try:
with path_json.open("r") as fd:
data_json = json.load(fd)
except Exception as err:
tools.warning(f"Result directory {str(path_results)}: unable to read JSON configuration ({err})")
data_json = None
# Load training data
path_study = path_results / "study"
try:
data_study = pandas.read_csv(path_study, sep="\t", index_col=0, na_values=" nan")
data_study.index.name="Step number"
except Exception as err:
tools.warning(f"Result directory {str(path_results)}: unable to read training data ({err})")
data_study = None
# Load evaluation data
path_eval = path_results / "eval"
try:
data_eval = pandas.read_csv(path_eval, sep="\t", index_col=0)
data_eval.index.name="Step number"
except Exception as err:
tools.warning(f"Result directory {str(path_results)}: unable to read evaluation data ({err})")
data_eval = None
# Merge data frames (if both are here)
if data_study is not None and data_eval is not None:
data = data_study.join(data_eval, how="outer")
else:
data = data_study or data_eval
# Finalization
self.name = path_results.name
self.path = path_results
self.config = data_config
self.json = data_json
self.data = data
self.thresh = None
def get(self, *only_columns):
""" Get (some of) the data.
Args:
name Name of the data frame to consider
... Only columns to select, empty for all
Returns:
Selected data, by reference
"""
global select
return select(self.data, *only_columns)
def display(self, *only_columns, name=None):
""" Just display (some of) the data.
Args:
name Name of the data frame to consider
... Only columns to select, empty for all
Returns:
self
"""
global display
# Display the (selected sub)set
display(self.get(*only_columns), title=(f"Session data{' (subset)' if len(only_columns) > 0 else ''} for {self.name!r}"))
# Return self to enable chaining
return self
def has_known_ratio(self):
""" Check whether the session's GAR has a known ratio.
Returns:
Whether the session's GAR has a known ratio
"""
if self.json is None or "gar" not in self.json:
tools.warning("No valid JSON-formatted configuration, cannot tell whether the associated GAR has a ratio")
return
g = self.json["gar"]
rule = aggregators.gars.get(g, None)
return rule is not None and rule.upper_bound is not None
def compute_all(self):
""" Carries all the automated computations.
Returns:
self
"""
# Carries all the computations
for name, func in type(self).__dict__.items():
if name == "compute_all":
continue
if name[:len("compute_")] == "compute_" and callable(func):
func(self)
# Return self to enable chaining
return self
def compute_epoch(self):
""" Compute and append the epoch number, if not already done.
Returns:
self
"""
column_name = "Epoch number"
# Check if already there
if column_name in self.data.columns:
return
# Compute epoch number
if self.json is None or "dataset" not in self.json:
tools.warning("No valid JSON-formatted configuration, cannot compute the epoch number")
return
dataset_name = self.json["dataset"]
training_size = {"mnist": 60000, "fashionmnist": 60000, "cifar10": 50000, "cifar100": 50000}.get(dataset_name, None)
if training_size is None:
tools.warning(f"Unknown dataset {dataset_name!r}, cannot compute the epoch number")
return
self.data[column_name] = self.data["Training point count"] / training_size
# Return self to enable chaining
return self
def compute_lr(self):
""" Compute and append the learning rate, if not already done.
Returns:
self
"""
column_name = "Learning rate"
# Check if already there
if column_name in self.data.columns:
return
# Compute epoch number
if self.json is None or "learning_rate" not in self.json:
tools.warning("No valid JSON-formatted configuration, cannot compute the learning rate")
return
lr_schedule = self.json.get("learning_rate_schedule")
if lr_schedule is None:
lr = self.json["learning_rate"]
lr_decay = self.json.get("learning_rate_decay", 0)
lr_delta = self.json.get("learning_rate_decay_delta", 1)
if lr_decay > 0:
self.data[column_name] = lr / ((self.data.index // lr_delta * lr_delta) / lr_decay + 1)
else:
self.data[column_name] = lr
else:
tools.warning("Learning rate schedule not yet supported for schedule generation")
# Return self to enable chaining
return self
def calc_max_ratio(self, nowarn=False):
""" Compute the maximum ratio std dev. / norm theoretically supported by the GAR, cache the result.
Args:
nowarn Do not issue a warning if the GAR does not have a known ratio
Returns:
Maximum ratio, None if unavailable
"""
# Fast path
if self.thresh is not None:
if self.thresh < 0: # Unavailable
return None
return self.thresh
# Compute and cache threshold
if self.json is None or not all(name in self.json for name in ("gar", "nb_workers", "nb_decl_byz")):
tools.warning("No valid JSON-formatted configuration, cannot compute the maximum variance-norm ratio for the GAR")
return
g = self.json["gar"]
rule = aggregators.gars.get(g, None)
if rule is not None and rule.upper_bound is not None:
n = self.json["nb_workers"]
f = self.json["nb_decl_byz"]
d = experiments.Model(self.json["model"], **self.json["model_args"], config=experiments.Configuration(device="cpu")).get().numel()
self.thresh = rule.upper_bound(n, f, d)
else:
if not nowarn:
tools.warning(f"GAR {g!r} has no known ratio threshold")
self.thresh = -1
# Return threshold
if self.thresh < 0:
return None
return self.thresh
def compute_ratio(self, nowarn=False):
""" Compute and append the ratios std. dev. / norm and whether the honest one was enough for the GAR, if not already done.
Args:
nowarn Do not issue a warning if the GAR does not have a known ratio
Returns:
self
"""
# Compute ratio columns
for clsname in ("Sampled", "Honest"): # "Honest" must be last (as used for validity column)
column_ratio_name = f"{clsname} ratio"
if column_ratio_name not in self.data.columns:
self.data[column_ratio_name] = (self.data[f"{clsname} gradient deviation"] / self.data[f"{clsname} gradient norm"]) ** 2
# Compute whether the honest ratio was enough for the GAR
column_valid_name = "Ratio enough for GAR?"
if column_valid_name not in self.data.columns:
max_ratio = self.calc_max_ratio(nowarn=nowarn)
if max_ratio is not None:
valid_threshold = max_ratio ** 2
self.data[column_valid_name] = self.data[column_ratio_name] < valid_threshold
# Return self to enable chaining
return self
# TODO: More automated computations of interest
# ---------------------------------------------------------------------------- #
# Plot management class
class LinePlot:
""" Line plot management class.
"""
# Known line styles
linestyles = ("-", "--", ":", "-.")
@classmethod
def _get_line_style(self, ln):
""" Get the line style and color for the given line number.
Args:
ln A non-negative integer representing the line number
Returns:
Associated line style, line color
"""
return self.linestyles[ln % len(self.linestyles)], f"C{ln}"
def __init__(self, index=None):
""" Title constructor.
Args:
index Column name to use as the index instead of the default
"""
# Make the subplots
fig, ax = plt.subplots()
# Store the non-finalized state
self._fin = False # Not yet finalized
self._fig = fig # Figure instance
self._ax = ax # Original axis instance
self._tax = None # Twin axis instance
self._axs = {} # Map column names to axis (up to two)
self._idx = index # Column name to use as index by default, None to use dataframe's index
self._cnt = 0 # Plot counter (to pick line style and color)
def __del__(self):
""" Close the figure on finalization.
"""
self.close()
def _get_ax(self, name):
""" Get the axis associated with the column selector, make it if possible.
Args:
name Column selector
Returns:
Associated axis
"""
# Return existing axis
ax = self._axs.get(name, None)
if ax is not None:
return ax
# Assert can make one more axis
if len(self._axs) >= 2:
raise RuntimeError("Line plot cannot have a 3rd y-axis")
# Make one more axis
if len(self._axs) == 0:
ax = self._ax
else:
ax = self._ax.twinx()
self._tax = ax
self._axs[name] = ax
# Return the axis
return ax
def include(self, data, *cols, errs=None, lalp=1., ccnt=None):
""" Add the columns of the given data frame, can only be done before finalization.
Args:
data Session or dataframe holding the column(s) to add
cols Column name(s) to include, mix selected columns together (same y-axis)
errs Error suffix: for every selected column's real label, if a columns with 'real_label + errs' exists, it is used to display error bars
lalp Line alpha level
ccnt Color and linestyle number to use
Returns:
self
"""
# Assert not already finalized
if self._fin:
raise RuntimeError("Plot is already finalized and cannot include another line")
# Recover the dataframe if a session was given
if isinstance(data, Session):
data = data.data
elif not isinstance(data, pandas.DataFrame):
raise RuntimeError(f"Expected a Session or DataFrame for 'data', got a {tools.fullqual(type(data))!r}")
# Get the x-axis values
if self._idx is None:
x = data.index.to_numpy()
else:
if self._idx not in data:
raise RuntimeError(f"No column named {self._idx!r} to use as index in the given session/dataframe")
x = data[self._idx].to_numpy()
# Select semantic: empty list = select all
if len(cols) == 0:
cols = data.columns.to_list()
# For every selection
axis = None
for col in cols:
# Get associated data
subd = select(data, col)
# For every selected column
for scol in subd:
# Ignore index column
if self._idx is not None and scol == self._idx:
continue
# Ignore error column
if errs is not None and scol[:-len(errs)] in subd:
continue
# Get associated axis (if not done yet)
if axis is None:
axis = self._get_ax(col)
# Pick a new line style and color
linestyle, color = self._get_line_style(self._cnt if ccnt is None else ccnt)
# Plot the data (line or error line)
davg = subd[scol].to_numpy()
errn = None if errs is None else (scol + errs)
if errn is not None and errn in data:
derr = data[errn].to_numpy()
axis.fill_between(x, davg - derr, davg + derr, facecolor=color, alpha=0.2)
axis.plot(x, davg, label=scol, linestyle=linestyle, color=color, alpha=lalp)
# Increase the counter only on success
self._cnt += 1
# Reset axis for next iteration
axis = None
# Return self for chaining
return self
def finalize(self, title, xlabel, ylabel, zlabel=None, xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, legend=None):
""" Finalize the plot, can be done only once and would prevent further inclusion.
Args:
title Plot title
xlabel Label for the x-axis
ylabel Label for the y-axis
zlabel Label for the twin y-axis, if any
xmin Minimum for abscissa, if any
xmax Maximum for abscissa, if any
ymin Minimum for ordinate, if any
ymax Maximum for ordinate, if any
zmin Minimum for second ordinate, if any
zmax Maximum for second ordinate, if any
legend List of strings (one per 'include', in call order) to use as legend
Returns:
self
"""
# Fast path
if self._fin:
return self
# Plot the legend
def generator_sum(gen):
res = None
while True:
try:
val = next(gen)
if res is None:
res = val
else:
res += val
except StopIteration:
return res
(self._ax if self._tax is None else self._tax).legend(generator_sum(ax.get_legend_handles_labels()[0] for ax in self._axs.values()), generator_sum(ax.get_legend_handles_labels()[1] for ax in self._axs.values()) if legend is None else legend, loc="best")
# Plot the grid and labels
self._ax.grid()
self._ax.set_xlabel(xlabel)
self._ax.set_ylabel(ylabel)
self._ax.set_title(title)
if zlabel is not None:
if self._tax is None:
tools.warning(f"No secondary y-axis found, but its label {zlabel!r} was provided")
else:
self._tax.set_ylabel(zlabel)
elif self._tax is not None:
tools.warning(f"No label provided for the secondary y-axis; using label {ylabel!r} from the primary")
self._tax.set_ylabel(ylabel)
self._ax.set_xlim(left=xmin, right=xmax)
self._ax.set_ylim(bottom=ymin, top=ymax)
if self._tax is not None:
self._tax.set_ylim(bottom=zmin, top=zmax)
# Mark finalized
self._fin = True
# Return self for chaining
return self
def display(self):
""" Display the figure, which must have been finalized.
Returns:
self
"""
# Assert already finalized
if not self._fin:
raise RuntimeError("Cannot display a plot that has not been finalized yet")
# Show the plot
self._fig.show()
# Return self for chaining
return self
def save(self, path, dpi=200, xsize=3, ysize=2):
""" Save the figure, which must have been finalized.
Args:
path Path of the file to write
dpi Output image DPI (very good quality printing is usually 300 DPI)
xsize Output image x-size (in cm)
ysize Output image y-size (in cm)
Returns:
self
"""
# Assert already finalized
if not self._fin:
raise RuntimeError("Cannot display a plot that has not been finalized yet")
# Save the figure
self._fig.set_size_inches(xsize * 2.54, ysize * 2.54)
self._fig.set_dpi(dpi)
self._fig.savefig(path)
# Return self for chaining
return self
def close(self):
""" Explicitly "close" the associated figure (needed by pyplot), the instance cannot be used anymore after the call.
"""
if self._fig is not None: # The documentation of 'plt.close' does not explicitly specify that multiple calls are allowed on the same 'Figure'
plt.close(self._fig)
self._fig = None
class BoxPlot:
""" Box/violin plot management class.
"""
def __init__(self, index=None):
""" Title constructor.
Args:
index Column name to use as the index instead of the default
"""
# Make the subplots
fig, ax = plt.subplots()
# Store the non-finalized state
self._fin = False # Not yet finalized
self._fig = fig # Figure instance
self._ax = ax # Original axis instance
self._data = list() # Data: list of data array
self._lbls = list() # Data: list of labels
self._hls = list() # List of horizontal line ordinates to plot
def __del__(self):
""" Close the figure on finalization.
"""
self.close()
def include(self, data, label):
""" Add the columns of the given data frame, can only be done before finalization.
Args:
data Series or (numpy) array to add
label Label for this data
Returns:
self
"""
# Assert not already finalized
if self._fin:
raise RuntimeError("Plot is already finalized and cannot include another line")
# Recover the array if a series was given
if isinstance(data, pandas.Series):
data = data.to_numpy()
elif not any(isinstance(data, dtype) for dtype in (numpy.ndarray, list, tuple)):
raise RuntimeError(f"Expected a Series or an (numpy) array for 'data', got a {tools.fullqual(type(data))!r}")
# Append the data
self._data.append(data)
self._lbls.append(label)
# Return self for chaining
return self
def hline(self, y):
""" Add an horizontal line to the plot.
Args:
y Ordinate of the horizontal line
Returns:
self
"""
# Push the ordinate
self._hls.append(y)
# Return self for chaining
return self
def finalize(self, title, ylabel, ymin=None, ymax=None, violin=False):
""" Finalize the plot, can be done only once and would prevent further inclusion.
Args:
title Plot title
ylabel Label for the y-axis
ymin Minimum for ordinate, if any
ymax Maximum for ordinate, if any
violin Whether to use violin plots instead of box plots
Returns:
self
"""
# Fast path
if self._fin:
return self
# Plot the grid and labels
self._ax.grid()
self._ax.set_title(title)
self._ax.set_ylabel(ylabel)
self._ax.set_ylim(bottom=ymin, top=ymax)
# Plot the data
for i, y in enumerate(self._hls):
self._ax.axhline(y, color=f"C{i}", linestyle="--")
if violin:
self._ax.violinplot(self._data, showmedians=True, showmeans=False, showextrema=False)
else:
self._ax.boxplot(self._data)
plt.setp(self._ax, xticks=list(range(1, len(self._data) + 1)), xticklabels=self._lbls)
# Mark finalized
self._fin = True
# Return self for chaining
return self
def display(self):
""" Display the figure, which must have been finalized.
Returns:
self
"""
# Assert already finalized
if not self._fin:
raise RuntimeError("Cannot display a plot that has not been finalized yet")
# Show the plot
self._fig.show()
# Return self for chaining
return self
def save(self, path, dpi=200, xsize=3, ysize=2):
""" Save the figure, which must have been finalized.
Args:
path Path of the file to write
dpi Output image DPI (very good quality printing is usually 300 DPI)
xsize Output image x-size (in cm)
ysize Output image y-size (in cm)
Returns:
self
"""
# Assert already finalized
if not self._fin:
raise RuntimeError("Cannot display a plot that has not been finalized yet")
# Save the figure
self._fig.set_size_inches(xsize * 2.54, ysize * 2.54)
self._fig.set_dpi(dpi)
self._fig.savefig(path)
# Return self for chaining
return self
def close(self):
""" Explicitly "close" the associated figure (needed by pyplot), the instance cannot be used anymore after the call.
"""
if self._fig is not None: # The documentation of 'plt.close' does not explicitly specify that multiple calls are allowed on the same 'Figure'
plt.close(self._fig)
self._fig = None