-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
95 lines (76 loc) · 4.27 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from config.config_Solver import combine_Solver_configs
from game_utils import ASP
import warnings
import numpy as np
import torch
import random
warnings.filterwarnings('ignore')
def set_random_seed(seed=None):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
if __name__=="__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--task_description',type=str, default='None',
help='description of task')
# set training paradigm
parser.add_argument('--train_from_scratch',default=True,)
parser.add_argument('--not_use_task_selection', type=bool, default=False,
help='use task selection or not in curriculum learning')
parser.add_argument('--not_use_std', type=bool, default=False,
help='use history performance for stability or not in curriculum learning')
# set game
parser.add_argument('--problem_scale_list', nargs='+', default=None,
help='preset problem scale list')
parser.add_argument('--training_status', type=str, default=None,
help='begin with psro or AS')
parser.add_argument('--problem_scale_start', type=int, default=20,
help='curriculum learning start with this problem scale')
parser.add_argument('--problem_scale_step', type=int, default=20, help='incremental for the next problem scale')
parser.add_argument('--problem_scale_end', type=int, default=100,
help='the largest problem scale we want to handle')
parser.add_argument('--performance_thres', type=float, default=1)
parser.add_argument('--keep_performance_thres', type=bool, default=True)
parser.add_argument('--patience', type=int, default=5)
parser.add_argument('--iter_num', type=int, default=100, help='maximal training loop')
parser.add_argument('--psro_loop', type=int, default=5, help='psro loop for each problem scale')
parser.add_argument('--AS_loop', type=int, default=1, help='AS loop for each problem scale')
parser.add_argument('--load_resume', default=None, help='Resume from previous ASP training')
parser.add_argument('--create_dir', action='store_true', help='whether creating a log dir when beginning to train')
parser.add_argument('--save_path', default='./')
# eval the game
parser.add_argument('--eval_num', type=int, default=100)
parser.add_argument('--eval_mode', type=str, default='gt', help='gt: using oracle solver; mix: using mix-solver')
# set solver
parser.add_argument('--train_solver_only', action='store_true', help='True when we do curriculum on uniform')
parser.add_argument('--problem', type=str, default='TSP',
help='TSP, CVRP, SDVRP, OP, PCTSP_DET, PCTSP_STOCH')
parser.add_argument('--method', type=str, default='POMO')
parser.add_argument('--solver_epochs', type=int, default=5,
help='The number of epochs to train solvers')
parser.add_argument('--num_batch', type=int, default=1,
help='The number of batches to fintune')
parser.add_argument('--solver_val_size', type=int, default=10000,
help='The number of epochs to train')
parser.add_argument('--solver_n_encode_layers', type=int, default=6,)
parser.add_argument('--offset_test', default=100,
help='The number of epochs to train')
# set data generator
parser.add_argument('--dg_epochs', type=int, default=100,
help='The number of epochs to train')
parser.add_argument('--dg_lr', type=float, default=1e-4)
parser.add_argument('--dg_wd', type=float, default=1e-5,)
parser.add_argument('--dg_train_batch', type=int, default=1280,)
parser.add_argument('--dg_eval_batch', type=int, default=1000,)
parser.add_argument('--dg_nf_layer', type=int, default=5,
help='Number of layers of Normalizing Flows')
# set wandb recording
parser.add_argument('--log_to_wandb', action='store_true')
parser.add_argument('--seed', type=int, default=1234)
config = combine_Solver_configs(parser)
seed = np.random.randint(0,10000)
set_random_seed(seed)
asp = ASP(config)
asp.train_asp()