-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgame_utils.py
833 lines (748 loc) · 36.7 KB
/
game_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
from open_spiel.python.algorithms import lp_solver
from Agent import Agent_DG, Agent_Solver
import numpy as np
from copy import deepcopy
import torch
import itertools
import pyspiel
from evaluation import dict_to_argparse, read_generated_data
from OracleSolver.oracles import parall_solve
import wandb
import os, json
import time
from torch.distributions.uniform import Uniform
def empty_list_generator(num_dimensions):
result = []
for _ in range(num_dimensions - 1):
result = [result]
return result
class PSRO:
def __init__(self, config):
self.symmetric_game = False
self.Oracle_Solver = parall_solve # set Oracle solver to get ground-truth
self._meta_solver = lp_solver
self._num_players = 2
self.config = config
def init(self, problem_scale, solver_agent=None):
self.config = deepcopy(self.config)
self.config.problem_scale = [problem_scale]
self.DG = Agent_DG(self.config)
if solver_agent is None:
self.SS = Agent_Solver(self.config)
else:
self.SS = solver_agent
self.SS.update_config(self.config)
self._iterations = 0
self.eval_result = []
self.pop_row_idx = [0]
self.pop_col_idx = [0]
self.generated_data = []
self._initialize_policy(problem_scale)
self._initialize_game_state()
self.update_meta_strategies()
eval_gap = self.eval_solver()
self.eval_result.append(eval_gap)
def _initialize_policy(self, problem_scale):
self.problem_scale = [problem_scale]
self._policies = [[] for k in range(self._num_players)]
self._new_policies = [[self.SS.solver_agent_info()], [self.DG.oracle]]
val_dataset = self.DG.sample_instance(self.DG.oracle, self.problem_scale[0],
self.config.eval_num)
gt = self.Oracle_Solver(val_dataset, self.config.problem)[0]
self.generated_data.append([val_dataset, np.array(gt)])
def _initialize_game_state(self):
self._meta_payoff = [
np.array(empty_list_generator(self._num_players))
for _ in range(self._num_players)
]
self.update_empirical_gamestate(seed=None)
def update_agents(self, logger=None): # Generate new, Best Response agents via oracle.
meta_strategy_SS = list(self._meta_strategy[0])
meta_strategy_DG = list(self._meta_strategy[1])
if not self.config.train_solver_only:
param_SS_list = self._policies[0]
solver = deepcopy(self.SS.model)
eval_func = self.SS.get_solver
self.DG.train_oracle(solver, eval_func, meta_strategy_SS, param_SS_list, [1.], train_from_scratch=True,
logger=logger)
marginal_dist = torch.matmul(torch.tensor(meta_strategy_DG).unsqueeze(1),
torch.tensor([1.]).unsqueeze(
0).to(torch.float32)) # tensor: num_DG_polcy x num_PS_polcy
sampler = lambda judge: self.sampler(marginal_dist, train=judge)
self.SS.train_oracle(sampler=sampler, train_from_scratch=False, logger=logger)
if not self.config.train_solver_only:
self._new_policies = [[self.SS.solver_agent_info()], [self.DG.oracle]]
val_dataset = self.DG.sample_instance(self.DG.oracle, self.problem_scale[0],
self.config.eval_num)
gt = self.Oracle_Solver(val_dataset, self.config.problem)[0]
self.generated_data.append([val_dataset, np.array(gt)])
else:
self._new_policies = [[self.SS.solver_agent_info()], []]
def update_empirical_gamestate(self, seed): # Update gamestate matrix by mix-sovler
"""Given new agents in _new_policies, update meta_games through simulations.
Args:
seed: Seed for environment generation.
Returns:
Meta game payoff matrix.
"""
if seed is not None:
np.random.seed(seed=seed)
torch.manual_seed(seed=seed)
# Concatenate both lists.
updated_policies = [
self._policies[k] + self._new_policies[k]
for k in range(self._num_players)
]
# Each metagame will be (num_strategies)^self._num_players.
# There are self._num_player metagames, one per player.
total_number_policies = [
len(updated_policies[k]) for k in range(self._num_players)
]
number_older_policies = [
len(self._policies[k]) for k in range(self._num_players)
]
number_new_policies = [
len(self._new_policies[k]) for k in range(self._num_players)
]
# Initializing the matrix with nans to recognize unestimated states.
meta_payoff = [
np.full(tuple(total_number_policies), np.nan)
for k in range(self._num_players)
]
# Filling the matrix with already-known values.
older_policies_slice = tuple(
[slice(len(self._policies[k])) for k in range(self._num_players)])
for k in range(self._num_players):
meta_payoff[k][older_policies_slice] = self._meta_payoff[k]
for current_player in range(self._num_players):
# Only iterate over new policies for current player ; compute on every
# policy for the other players.
range_iterators = [
range(total_number_policies[k]) for k in range(current_player)
] + [range(number_new_policies[current_player])] + [
range(total_number_policies[k])
for k in range(current_player + 1, self._num_players)
]
for current_index in itertools.product(*range_iterators):
used_index = list(current_index)
used_index[current_player] += number_older_policies[current_player]
if np.isnan(meta_payoff[current_player][tuple(used_index)]):
estimated_policies = [
updated_policies[k][current_index[k]]
for k in range(current_player)
] + [
self._new_policies[current_player][current_index[current_player]]
] + [
updated_policies[k][current_index[k]]
for k in range(current_player + 1, self._num_players)
]
val_dataset, gt = self.generated_data[used_index[1]]
neural_solver = self.SS.load_solver_agent_info(estimated_policies[0], 'training').model
pred = self.SS.eval_solver(neural_solver, val_dataset, self.problem_scale[0])
try:
pred = pred.cpu().numpy()
except:
pass
if self.config.problem == 'OP':
mean_gap = np.abs((pred / np.array(gt) - 1) * 100).mean()
else:
mean_gap = ((pred / np.array(gt) - 1) * 100).mean()
utility_estimates = [-mean_gap, mean_gap, mean_gap]
for k in range(self._num_players):
meta_payoff[k][tuple(used_index)] = utility_estimates[k]
self._meta_payoff = meta_payoff
self._policies = updated_policies
return meta_payoff
def update_meta_strategies(self, ): # Compute meta strategy (e.g. Nash)
# self.update_sampler()
p0_sol, p1_sol, _, _ = (
self._meta_solver.solve_zero_sum_matrix_game(
pyspiel.create_matrix_game(
self._meta_payoff[0],
self._meta_payoff[1])))
self._meta_strategy = [p0_sol, p1_sol]
def get_meta_game(self):
"""Returns the meta game matrix."""
return self._meta_payoff
def sampler(self, marginal_dist, train=True):
dataset = []
if train:
batch_size = self.config.solver_epoch_size
else:
batch_size = self.config.solver_val_size
for j in range(marginal_dist.shape[1]):
data_in_same_scale = []
for i in range(marginal_dist.shape[0]):
dg_param = self._policies[1][i]
data = self.DG.sample_instance(dg_param, self.problem_scale[j],
max(int(batch_size * marginal_dist[i, j]), 1))
data_in_same_scale.append(data)
dataset.append(torch.cat(data_in_same_scale, dim=0))
return dataset
def eval_solver(self):
dataset, gt, problem_scale = read_generated_data(self.config.problem, self.config.offset_test)
sample_size = len(gt[0])
gt = np.concatenate(gt)
norm_factor = 1
param_list = self._policies[0]
solver = deepcopy(self.SS.model)
solver.load_state_dict({**solver.state_dict(), **param_list[-1]['model']})
pred = self.SS.eval_solver(solver, dataset, problem_scale)
if self.config.problem == 'OP':
gap = np.abs(pred.cpu().numpy() * norm_factor / gt - 1) * 100
else:
gap = (pred.cpu().numpy() * norm_factor / gt - 1) * 100
gap = gap.reshape(-1, sample_size).mean(-1)
eval_gap = {}
for i, s in enumerate(problem_scale):
eval_gap[s] = gap[i]
return eval_gap
def iteration(self, logger, seed=None):
"""Main trainer loop.
Args:
seed: Seed for random BR noise generation.
"""
self._iterations += 1
self.update_agents(logger) # Generate new, Best Response agents via oracle.
self.update_empirical_gamestate(seed=seed) # Update gamestate matrix.
self.update_meta_strategies() # Compute meta strategy (e.g. Nash)
meta_payoff1 = self._meta_payoff[0]
meta_payoff2 = self._meta_payoff[1]
self.pop_row_idx.append(np.argmax(meta_payoff1 @ np.array(list(self._meta_strategy[1])).reshape(-1, 1)).item())
self.pop_col_idx.append(np.argmax(np.array(list(self._meta_strategy[0])).reshape(1, -1) @ meta_payoff2).item())
eval_gap = self.eval_solver()
self.eval_result.append(eval_gap)
def train_psro(self, performance_log, logger=None, all_eval_steps=None, psro_eval_steps=None):
for i in range(self.config.psro_loop):
self.iteration(logger)
total_gap = []
all_total_gap = []
for dic in self.eval_result:
temp = []
all_temp = []
for key in dic.keys():
if logger is not None:
logger.log({'All Evalution Process/Evaluation Gap on scale: {}'.format(key): dic[key],
'epoch': all_eval_steps})
all_temp.append(dic[key])
if key in performance_log.keys():
if logger is not None:
logger.log({'PSRO/Evaluation Gap on scale: {}'.format(key): dic[key], 'epoch': psro_eval_steps})
temp.append(dic[key])
performance_log[key].append(dic[key])
all_eval_steps += 1
psro_eval_steps += 1
total_gap.append(np.mean(temp))
all_total_gap.append(np.mean(all_temp))
idx = np.argmin(np.array(total_gap))
self.SS.load_solver_agent_info(self._policies[0][idx], 'training')
return self.SS, {'mix_prob': list(self._meta_strategy[1]), 'dist_param': self._policies[1],
'data_gt': self.generated_data}, total_gap[idx], all_total_gap[idx]
class AS:
def __init__(self, config, C=None):
self.config = config
self.old_C = None
self.C = C
self.hist_eval = {}
def init(self, problem_scale, dist, solver_agent=None):
if solver_agent is None:
self.solver_agent = Agent_Solver(self.config)
else:
self.solver_agent = solver_agent
self.problem_scale = problem_scale
for s in problem_scale:
self.hist_eval.setdefault(s, [])
self.dist = dist
self.config.problem_scale = problem_scale
self.dg_agent = Agent_DG(self.config)
def momentum_AS(self, performance_diff, hist_std):
if not self.config.not_use_task_selection:
performance_diff = performance_diff.reshape(-1, 1)
hist_std = hist_std.reshape(-1, 1)
if not self.config.not_use_std:
prob = (performance_diff + hist_std) / 2
else:
prob = performance_diff
else:
prob = np.ones(len(self.problem_scale)).reshape(-1,1)
return prob / prob.sum()
def get_cost_vector(self, ):
cost_vec = np.full((len(self.problem_scale), 1), np.nan)
for i in range(len(self.problem_scale)):
cost_vec[i, 0] = self.eval_func(self.problem_scale[i], self.dist[i])
self.hist_eval[self.problem_scale[i]].append(cost_vec[i, 0])
return cost_vec
def train_AS(self, performance_log, logger=None, all_eval_steps=None, AS_eval_steps=None):
eval_res = self.eval_solver()
best_eval = []
all_best_eval = []
for key in eval_res.keys():
all_best_eval.append(eval_res[key])
if key in self.problem_scale:
best_eval.append(eval_res[key])
hist_std = np.array([np.std(v[-10:]) for v in performance_log.values()])
hist_std /= np.sum(hist_std)
hist_std[np.isnan(hist_std)] = 1
hist_std /= np.sum(hist_std)
performance_diff = []
for _ in range(len(hist_std)):
performance_diff.append((best_eval[_] - self.config.performance_thres) / self.config.performance_thres)
performance_diff = np.array(performance_diff)
performance_diff[performance_diff < 0] = 0
print('performance diff:', (performance_diff).reshape(-1))
if not (performance_diff == 0).all():
performance_diff = performance_diff / np.sum(performance_diff)
best_eval = np.mean(np.array(best_eval))
all_best_eval = np.mean(np.array(all_best_eval))
for i in range(self.config.AS_loop):
marginal_dist = self.momentum_AS(performance_diff, hist_std)
temp_solver_agent_info = self.train_func(marginal_dist)
eval_res = self.eval_solver()
eval_temp = []
all_eval_temp = []
for key in eval_res.keys():
if logger is not None:
logger.log({'All Evalution Process/Evaluation Gap on scale: {}'.format(key): eval_res[key],
'epoch': all_eval_steps})
all_eval_steps += 1
all_eval_temp.append(eval_res[key])
if key in self.problem_scale:
if logger is not None:
logger.log(
{'AS/Evaluation Gap on scale: {}'.format(key): eval_res[key], 'epoch': AS_eval_steps})
AS_eval_steps += 1
eval_temp.append(eval_res[key])
performance_log[key].append(eval_res[key])
hist_std = np.array([np.std(v[-10:]) for v in performance_log.values()])
hist_std /= np.sum(hist_std)
hist_std[np.isnan(hist_std)] = 1
hist_std /= np.sum(hist_std)
performance_diff = []
for _ in range(len(hist_std)):
performance_diff.append((eval_temp[_] - self.config.performance_thres) / self.config.performance_thres)
performance_diff = np.array(performance_diff)
performance_diff[performance_diff < 0] = 0
if not (performance_diff == 0).all():
performance_diff = performance_diff / np.sum(performance_diff)
eval_temp = np.mean(np.array(eval_temp))
all_eval_temp = np.mean(np.array(all_eval_temp))
best_eval = eval_temp
all_best_eval = all_eval_temp
return self.solver_agent, best_eval, all_best_eval
def train_func(self, marginal_dist):
sampler = lambda judge: self.sampler(marginal_dist, train=judge)
self.solver_agent.train_oracle(sampler=sampler, train_from_scratch=False)
return self.solver_agent.solver_agent_info()
def eval_func(self, scale, dist):
self_generated_data_gt = dist['data_gt']
mix_prob = dist['mix_prob']
num_data = self_generated_data_gt[0][0].shape[0]
num_data_per_dist = (np.array(mix_prob) * num_data).astype(int)
num_data_per_dist[num_data_per_dist == 0] = 1
data_list = []
gt_list = []
for i in range(len(mix_prob)):
idx = np.random.choice(np.arange(num_data), num_data_per_dist[i], False)
data_list.append(self_generated_data_gt[i][0][idx])
gt_list.append(self_generated_data_gt[i][1][idx])
data = torch.cat(data_list, 0)
gt = np.concatenate(gt_list, 0)
pred = self.solver_agent.eval_solver(self.solver_agent.model, data, None).cpu().numpy()
gap = (pred / gt - 1) * 100
return gap.mean()
def sampler(self, marginal_dist, train=True):
dataset = []
if train:
batch_size = self.config.solver_epoch_size
else:
batch_size = self.config.solver_val_size
for i in range(marginal_dist.shape[0]):
mix_dist = self.dist[i]
data = self.dg_agent.sample_mix_dist(mix_dist, self.problem_scale[i],
max(int(batch_size * marginal_dist[i, -1]), 1))
dataset.append(data)
return dataset
def eval_solver(self):
dataset, gt, problem_scale = read_generated_data(self.config.problem, self.config.offset_test)
sample_size = len(gt[0])
gt = np.concatenate(gt)
norm_factor = 1
solver = self.solver_agent.model
pred = self.solver_agent.eval_solver(solver, dataset, problem_scale)
if self.config.problem == 'OP':
gap = np.abs(pred.cpu().numpy() * norm_factor / gt - 1) * 100
else:
gap = (pred.cpu().numpy() * norm_factor / gt - 1) * 100
gap = gap.reshape(-1, sample_size).mean(-1)
eval_gap = {}
for i, s in enumerate(problem_scale):
eval_gap[s] = gap[i]
return eval_gap
class ASP:
def __init__(self, config, ):
if config.load_resume is not None:
asp_info = torch.load(config.load_resume)
args_path = '/'.join(config.load_resume.split('/')[:-1])
name = config.load_resume.split('/')[-2]
with open(os.path.join(args_path, 'args.json'), 'r') as f:
dict_param = json.load(f)
resume_config = dict_to_argparse(dict_param)
if not config.keep_performance_thres:
resume_config.performance_thres = config.performance_thres
config = resume_config
self.psro = PSRO(config, )
try:
self.psro._meta_strategy = asp_info['psro_info']['meta_strategy']
self.psro._meta_payoff = asp_info['psro_info']['meta_payoff']
except:
self.psro._meta_strategy = None
self.psro._meta_payoff = None
self.ps_list = asp_info['problem_scale_list']
self.resume_solver_agent = Agent_Solver(config).load_solver_agent_info(asp_info['solver_param'])
self.mix_dist_list = asp_info['mix_dist_list']
self.his_performance = asp_info['his_performance']
C = asp_info['cost_mat']
self.eval_res_list = asp_info['eval_res']
self.all_eval_res_list = asp_info['all_eval_res']
self.count = asp_info['count']
config.performance_thres = float(config.performance_thres)
config.eval_num = int(config.eval_num)
config.psro_loop = int(config.psro_loop)
if self.eval_res_list[-1] < config.performance_thres and self.ps_list[-1] < config.problem_scale_end:
self.status = 'psro'
self.ps_list += [self.ps_list[-1] + config.problem_scale_step]
else:
self.status = 'AS'
self.iterations = asp_info['iterations']
self.resume = True
self.all_eval_steps = asp_info['all_eval_steps']
self.psro_eval_steps = asp_info['psro_eval_steps']
self.AS_eval_steps = asp_info['AS_eval_steps']
self.best_eval = asp_info['best_eval']
self.all_best_eval = asp_info['all_best_eval']
self.time_cost = asp_info['time_cost']
if config.log_to_wandb:
wandb.init(
name=name+'-resume',
group='Combine-Agent-ts:{}-psro:{}-{}-{}'.format(config.train_from_scratch,
not config.train_solver_only, config.problem,
config.method),
project='ASP',
config=vars(config),
save_code=True,
resume='allow'
)
self.logger = wandb
else:
self.logger = None
self.create_dir = config.create_dir
self.path = args_path
else:
if config.problem_scale_list is not None:
self.ps_list = config.problem_scale_list
else:
self.ps_list = [config.problem_scale_start]
self.resume_solver_agent = None
C = None
if config.training_status == 'AS':
self.status = config.training_status
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.mix_dist_list = [{'mix_prob': [1.],
'dist_param': [Uniform(torch.zeros(2).to(device),torch.ones(2).to(device))],
'data_gt': None} for _ in range(len(self.ps_list))]
self.his_performance = {_:[] for _ in self.ps_list}
else:
self.status = 'psro'
self.mix_dist_list = []
self.his_performance = {}
self.iterations = 0
self.resume = False
self.eval_res_list = []
self.all_eval_res_list = []
self.count = 0
self.all_eval_steps = 0
self.psro_eval_steps = 0
self.AS_eval_steps = 0
self.best_eval = 1e6
self.all_best_eval = 1e6
self.time_cost = 0
if config.log_to_wandb:
wandb.init(
name=None,
group='Combine-Agent-ts:{}-psro:{}-{}-{}'.format(config.train_from_scratch,
not config.train_solver_only, config.problem,
config.method),
project='ASP',
config=vars(config),
save_code=True,
)
self.logger = wandb
else:
self.logger = None
self.create_dir = config.create_dir
if config.create_dir:
path = config.save_path
problem = config.problem
method = config.method
if self.logger is not None:
name = self.logger.run.name
else:
name = config.task_description
self.path = os.path.join(path, 'save_asp', problem, method, name)
if not os.path.exists(self.path):
os.makedirs(self.path)
with open(os.path.join(self.path, "args.json"), 'w') as f:
dic = deepcopy(vars(config))
if 'device' in dic.keys():
dic.pop('device')
json.dump(dic, f, indent=True)
self.psro = PSRO(config, )
routing_problem = ['OP', 'PCTSP_DET', 'PCTSP_STOCH', 'SDVRP']
if config.problem in routing_problem:
config.method = 'AM'
self.config = config
self.patience = config.patience
self.AS = AS(config, C)
self.start = time.time()
def sample_from_dist(self, dist):
self_generated_data_gt = dist['data_gt']
mix_prob = dist['mix_prob']
num_data = self_generated_data_gt[0][0].shape[0]
num_data_per_dist = (np.array(mix_prob) * num_data).astype(int)
num_data_per_dist[num_data_per_dist == 0] = 1
data_list = []
gt_list = []
for i in range(len(mix_prob)):
idx = np.random.choice(np.arange(num_data), num_data_per_dist[i], False)
data_list.append(self_generated_data_gt[i][0][idx])
gt_list.append(self_generated_data_gt[i][1][idx])
data = torch.cat(data_list, 0)
gt = np.concatenate(gt_list, 0)
return data, gt
def train_asp(self):
if self.status == 'psro':
print('Train initial PSRO')
self.psro.init(problem_scale=self.ps_list[-1], solver_agent=self.resume_solver_agent)
self.his_performance[self.ps_list[-1]] = []
solver_agent, mix_dist, eval_res, all_eval_res = self.psro.train_psro(self.his_performance, self.logger,
self.all_eval_steps,
self.psro_eval_steps)
self.all_eval_steps += self.config.psro_loop
self.psro_eval_steps += self.config.psro_loop
self.mix_dist_list.append(mix_dist)
else:
print('Train initial AS')
self.AS.init(self.ps_list, self.mix_dist_list, self.resume_solver_agent)
solver_agent, eval_res, all_eval_res = self.AS.train_AS(self.his_performance, self.logger,
self.all_eval_steps, self.AS_eval_steps)
self.all_eval_steps += self.config.AS_loop
self.AS_eval_steps += self.config.AS_loop
self.count += 1
self.eval_res_list.append(eval_res)
self.all_eval_res_list.append(all_eval_res)
if self.create_dir:
self.save_asp_info(solver_agent.solver_agent_info())
if eval_res < self.best_eval:
self.best_eval = eval_res
self.save_asp_info(solver_agent.solver_agent_info(), best=True)
if all_eval_res < self.all_best_eval:
self.all_best_eval = all_eval_res
self.save_asp_info(solver_agent.solver_agent_info(), all=True)
self.iterations += 1
if self.logger is not None:
self.logger.log(
{'All Evalution Process/Performance': eval_res,
'All Evalution Process/All Performance': all_eval_res,
'All Evalution Process/Threshold': self.config.performance_thres,
'All Evalution Process/Best Eval': self.best_eval,
'epoch': self.iterations})
while True:
if eval_res < self.config.performance_thres or (
self.count > self.patience and self.ps_list[-1] < self.config.problem_scale_end):
print('Train new PSRO')
ps_temp = self.ps_list[-1] + self.config.problem_scale_step
if ps_temp <= self.config.problem_scale_end:
self.ps_list.append(ps_temp)
self.his_performance[self.ps_list[-1]] = []
else:
break
self.psro.init(problem_scale=self.ps_list[-1], solver_agent=solver_agent)
solver_agent, mix_dist, eval_res, all_eval_res = self.psro.train_psro(self.his_performance, self.logger,
self.all_eval_steps,
self.psro_eval_steps)
self.all_eval_steps += self.config.psro_loop
self.psro_eval_steps += self.config.psro_loop
self.mix_dist_list.append(mix_dist)
self.count = 0
self.best_eval = eval_res
else:
print('Train new AS')
self.AS.init(self.ps_list, self.mix_dist_list, solver_agent)
solver_agent, eval_res, all_eval_res = self.AS.train_AS(self.his_performance, self.logger,
self.all_eval_steps, self.AS_eval_steps)
self.all_eval_steps += self.config.AS_loop
self.AS_eval_steps += self.config.AS_loop
self.count += 1
self.iterations += 1
self.eval_res_list.append(eval_res)
self.all_eval_res_list.append(all_eval_res)
if self.create_dir:
self.save_asp_info(solver_agent.solver_agent_info())
if eval_res <= self.best_eval:
self.best_eval = eval_res
self.save_asp_info(solver_agent.solver_agent_info(), best=True)
# for AS, if having improvement, reset the count
self.count = 0
if all_eval_res < self.all_best_eval:
self.all_best_eval = all_eval_res
self.save_asp_info(solver_agent.solver_agent_info(), all=True)
if self.logger is not None:
self.logger.log(
{'All Evalution Process/Performance': eval_res,
'All Evalution Process/All Performance': all_eval_res,
'All Evalution Process/Threshold': self.config.performance_thres,
'All Evalution Process/Best Eval': self.best_eval,
'epoch': self.iterations})
if self.iterations > self.config.iter_num - 1:
break
def save_asp_info(self, solver, best=False, all=False):
self.time_cost += (time.time() - self.start)
try:
psro_info = {'meta_strategy': self.psro._meta_strategy,
'meta_payoff': self.psro._meta_payoff,}
except:
psro_info = None
if self.resume:
if best:
torch.save(
{
'psro_info': psro_info,
'problem_scale_list': self.ps_list,
'solver_param': solver,
'mix_dist_list': self.mix_dist_list,
'cost_mat': self.AS.C,
'iterations': self.iterations,
'eval_res': self.eval_res_list,
'all_eval_res':self.all_eval_res_list,
'his_performance': self.his_performance,
'all_eval_steps': self.all_eval_steps,
'psro_eval_steps': self.psro_eval_steps,
'AS_eval_steps': self.AS_eval_steps,
'best_eval': self.best_eval,
'all_best_eval': self.all_best_eval,
'count': self.count,
'time_cost': self.time_cost
}
, self.path + '/best_asp_info.pt'
)
elif all:
torch.save(
{
'psro_info': psro_info,
'problem_scale_list': self.ps_list,
'solver_param': solver,
'mix_dist_list': self.mix_dist_list,
'cost_mat': self.AS.C,
'iterations': self.iterations,
'eval_res': self.eval_res_list,
'all_eval_res': self.all_eval_res_list,
'his_performance': self.his_performance,
'all_eval_steps': self.all_eval_steps,
'psro_eval_steps': self.psro_eval_steps,
'AS_eval_steps': self.AS_eval_steps,
'best_eval': self.best_eval,
'all_best_eval': self.all_best_eval,
'count': self.count,
'time_cost': self.time_cost
}
, self.path + '/all_best_asp_info.pt'
)
else:
torch.save(
{
'psro_info': psro_info,
'problem_scale_list': self.ps_list,
'solver_param': solver,
'mix_dist_list': self.mix_dist_list,
'cost_mat': self.AS.C,
'iterations': self.iterations,
'eval_res': self.eval_res_list,
'all_eval_res': self.all_eval_res_list,
'his_performance': self.his_performance,
'all_eval_steps': self.all_eval_steps,
'psro_eval_steps': self.psro_eval_steps,
'AS_eval_steps': self.AS_eval_steps,
'best_eval': self.best_eval,
'all_best_eval': self.all_best_eval,
'count': self.count,
'time_cost': self.time_cost
}
, self.path + '/asp_info_latest.pt'
)
else:
if best:
torch.save(
{
'psro_info': psro_info,
'problem_scale_list': self.ps_list,
'solver_param': solver,
'mix_dist_list': self.mix_dist_list,
'cost_mat': self.AS.C,
'iterations': self.iterations,
'eval_res': self.eval_res_list,
'all_eval_res': self.all_eval_res_list,
'his_performance': self.his_performance,
'all_eval_steps': self.all_eval_steps,
'psro_eval_steps': self.psro_eval_steps,
'AS_eval_steps': self.AS_eval_steps,
'best_eval': self.best_eval,
'all_best_eval': self.all_best_eval,
'count': self.count,
'time_cost': self.time_cost
}
, self.path + '/best_asp_info.pt'
)
elif all:
torch.save(
{
'psro_info': psro_info,
'problem_scale_list': self.ps_list,
'solver_param': solver,
'mix_dist_list': self.mix_dist_list,
'cost_mat': self.AS.C,
'iterations': self.iterations,
'eval_res': self.eval_res_list,
'all_eval_res': self.all_eval_res_list,
'his_performance': self.his_performance,
'all_eval_steps': self.all_eval_steps,
'psro_eval_steps': self.psro_eval_steps,
'AS_eval_steps': self.AS_eval_steps,
'best_eval': self.best_eval,
'all_best_eval': self.all_best_eval,
'count': self.count,
'time_cost': self.time_cost
}
, self.path + '/all_best_asp_info.pt'
)
else:
torch.save(
{
'psro_info': psro_info,
'problem_scale_list': self.ps_list,
'solver_param': solver,
'mix_dist_list': self.mix_dist_list,
'cost_mat': self.AS.C,
'iterations': self.iterations,
'eval_res': self.eval_res_list,
'all_eval_res': self.all_eval_res_list,
'his_performance': self.his_performance,
'all_eval_steps': self.all_eval_steps,
'psro_eval_steps': self.psro_eval_steps,
'AS_eval_steps': self.AS_eval_steps,
'best_eval': self.best_eval,
'all_best_eval': self.all_best_eval,
'count': self.count,
'time_cost': self.time_cost
}
, self.path + '/asp_info_latest.pt'
)