diff --git a/lmfdb/elliptic_curves/elliptic_curve.py b/lmfdb/elliptic_curves/elliptic_curve.py index 29a7800fde..ef47bc5ef9 100644 --- a/lmfdb/elliptic_curves/elliptic_curve.py +++ b/lmfdb/elliptic_curves/elliptic_curve.py @@ -994,13 +994,13 @@ def render_bhkssw(): learnmore = learnmore_list_remove('BHKSSW dataset') t = 'Balakrishnan-Ho-Kaplan-Spicer-Stein-Watkins elliptic curve database' bread = [("Datasets", url_for("datasets")), ("BHKSSW dataset", " ")] - if 'filename' in info: - filepath = os.path.join(os.path.expanduser('~/data/bhkssw_ecdb/' + info['filename'])) - if os.path.isfile(filepath) and os.access(filepath, os.R_OK): - return send_file(filepath, as_attachment=True) - else: - flash_error('File {} not found'.format(info['filename'])) - return redirect(url_for(".render_bhkssw")) + #if 'filename' in info: + # filepath = os.path.join(os.path.expanduser('~/data/bhkssw_ecdb/' + info['filename'])) + # if os.path.isfile(filepath) and os.access(filepath, os.R_OK): + # return send_file(filepath, as_attachment=True) + # else: + # flash_error('File {} not found'.format(info['filename'])) + # return redirect(url_for(".render_bhkssw")) # This format was nice, but not possible with the 30-second timeout limitation #info['files'] = [ # number of curves, size in MB, lower bound, upper bound, filename # (2249362, 151, "0", r"1 \cdot 10^8", "1e8db.txt"), diff --git a/lmfdb/elliptic_curves/templates/bhkssw.html b/lmfdb/elliptic_curves/templates/bhkssw.html index a56d19b15c..5a5a940ea0 100644 --- a/lmfdb/elliptic_curves/templates/bhkssw.html +++ b/lmfdb/elliptic_curves/templates/bhkssw.html @@ -9,7 +9,7 @@

File and data format

- The data is stored in text files, indexed from $k=0$ to $k=2699$. The file $k$.txt contains all of the elliptic curves whose minimal short Weierstrass form $y^2 = x^3 + A x + B$ has naive height $H$ in the range: the $k$th file contains data for $k \cdot 10^7 < H \le (k+1) \cdot 10^7$. + The data is stored in text files, indexed from $k=0$ to $k=2699$. The file $k$.txt contains data for elliptic curves $y^2 = x^3 + A x + B$ with $k \cdot 10^7 < H \le (k+1) \cdot 10^7$, where $H:=\max(4|A|^3,27B^2)$.

diff --git a/lmfdb/elliptic_curves/templates/sw_ecdb.html b/lmfdb/elliptic_curves/templates/sw_ecdb.html index 4f7a352356..7d38d5b1cc 100644 --- a/lmfdb/elliptic_curves/templates/sw_ecdb.html +++ b/lmfdb/elliptic_curves/templates/sw_ecdb.html @@ -3,13 +3,13 @@ {% block content %}

- This dataset contains 136,924,520 {{KNOWL('ec.q', 'elliptic curves')}} over $\Q$ with {{ KNOWL('ec.q.conductor', 'conductor') }} up to $10^8$, divided into 115,821,258 {{KNOWL('ec.isogeny_class', 'isogeny classes')}}. It also contains 11,378,911 elliptic curves with prime conductor up to $10^{10}$, divided into 11,372,286 isogeny classes. Note that not curves are included within these conductor ranges; see SStein-Watkins for more details. + This dataset contains 136,924,520 {{KNOWL('ec.q', 'elliptic curves')}} over $\Q$ with {{ KNOWL('ec.q.conductor', 'conductor') }} up to $10^8$, divided into 115,821,258 {{KNOWL('ec.isogeny_class', 'isogeny classes')}}. It also contains 11,378,911 elliptic curves with prime conductor up to $10^{10}$, divided into 11,372,286 isogeny classes. Not every curve satisfying these conductor bounds is present in this dataset, only those that satisfy additional bounds on the discriminant and coefficients are included; see Stein-Watkins for details.

File and data format

- The data for conductors $N$ up to $10^8$ is stored in 1000 text files, indexed from $k=0$ to $k=999$. The $k$th file contains data for $k \cdot 10^5 < N \le (k+1) \cdot 10^5$. Similarly, the data for prime conductors $p$ up to $10^{10}$ is stored in 100 text files, indexed from $k=0$ to $k=99$. The $k$th file contains data for $k \cdot 10^8 < p \le (k+1) \cdot 10^8$. + The data for conductors $N\le 10^8$ is stored in 1000 text files, indexed from $k=0$ to $k=999$, where the $k$th file contains data for $k \cdot 10^5 < N \le (k+1) \cdot 10^5$. Similarly, the data for prime conductors $p\le 10^{10}$ is stored in 100 text files, indexed from $k=0$ to $k=99$, where the $k$th file contains data for $k \cdot 10^8 < p \le (k+1) \cdot 10^8$.