From b64f1d2dab84727ecc441fa95dff68a223015ede Mon Sep 17 00:00:00 2001
From: John Cremona
+ This elliptic curve is {{ '' if ec.semistable else 'not' }} {{KNOWL('ec.semistable', title='semistable')}}.
+ There
+ {% if ec.n_bad_primes==0 %}
+ are no primes
+ {% else %}
+ {% if ec.n_bad_primes==1 %}
+ is only one prime $\frak{p}$
+ {% else %}
+ are {{ec.n_bad_primes }} primes $\frak{p}$
+ {% endif %}
+ {% endif %}
+ of {{KNOWL('ec.q.reduction_type', title='bad reduction')}}.
+
{% if not ec.is_minimal %}
Primes of good reduction for the curve but which divide the
discriminant of the model above (if any) are included.
{% endif %}
+ {{ KNOWL('ec.bsdconjecture', title='BSD invariants') }}
-
@@ -341,25 +341,41 @@ {{ KNOWL('ec.period', title='Period') }}:
+ {{ KNOWL('ec.period', title='Global period') }}:
$\Omega(E/K)$ ≈
{{ ec.omega }}
{{KNOWL('ec.local_data', title='Local data')}} at {{KNOWL('ec.bad_reduction'
-{% else %}
-No primes of bad reduction.
{% endif %}
-
{% for pr in ec.local_data %}
@@ -397,8 +413,6 @@ prime
-Norm
+$\mathfrak{p}$
+$N(\mathfrak{p})$
{{KNOWL('ec.tamagawa_number', title='Tamagawa number')}}
{{KNOWL('ec.kodaira_symbol', title='Kodaira symbol')}}
{{KNOWL('ec.reduction_type', title='Reduction type')}}
{% if ec.local_data.0.rootno %}
{{KNOWL('ec.local_root_number', title='Root number')}}
{% endif %}
-{{KNOWL('ec.conductor_valuation', title='ord(\(\mathfrak{N}\))')}}
-{{KNOWL('ec.discriminant_valuation', title='ord(\(\mathfrak{D}\))')}}
-{{KNOWL('ec.j_invariant_denominator_valuation', title='ord\((j)_{-}\)')}}
+{{KNOWL('ec.conductor_valuation', title='\(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\))')}}
+{{KNOWL('ec.discriminant_valuation', title='\(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\))')}}
+{{KNOWL('ec.j_invariant_denominator_valuation', title='\(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)')}}
{{KNOWL('ec.local_data', title='Local data')}} at {{KNOWL('ec.bad_reduction'
{% endfor %}
{{ KNOWL('ec.q.modular_degree', title='Modular degree') }}
{% endif %}