-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodelovae.py
690 lines (539 loc) · 21.1 KB
/
modelovae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
import torch
from torch import nn
import torch
torch.manual_seed(125)
import random
random.seed(125)
import numpy as np
import torch_f as torch_f
use_gpu = True
device = torch.device("cuda:0" if use_gpu and torch.cuda.is_available() else "cpu")
def traverse(root, tree):
if root is not None:
traverse(root.left, tree)
tree.append((root.radius, root.data))
traverse(root.right, tree)
return tree
def count_fn(f):
def wrapper(*args, **kwargs):
wrapper.count += 1
return f(*args, **kwargs)
wrapper.count = 0
return wrapper
@count_fn
def createNode(data, radius, left = None, right = None, ):
"""
Utility function to create a node.
"""
return Node(data, radius, left, right)
def deserialize(data):
if not data:
return
nodes = data.split(';')
def post_order(nodes):
if nodes[-1] == '#':
nodes.pop()
return None
node = nodes.pop().split('_')
data = int(node[0])
radius = node[1]
rad = radius.split(",")
rad [0] = rad[0].replace('[','')
rad [3] = rad[3].replace(']','')
r = []
for value in rad:
r.append(float(value))
r = torch.tensor(r, device=device)
root = createNode(data, r)
root.right = post_order(nodes)
root.left = post_order(nodes)
return root
return post_order(nodes)
def read_tree(filename, dir):
with open('./' +dir +'/' +filename, "r") as f:
byte = f.read()
return byte
def numerarNodos(root, count):
if root is not None:
numerarNodos(root.left, count)
root.data = len(count)
count.append(1)
numerarNodos(root.right, count)
return
def traverseFeatures(root, features):
if root is not None:
traverseFeatures(root.left, features)
features.append(root.radius)
traverseFeatures(root.right, features)
return features
def searchNode(node, key):
if (node == None):
return False
if (node.data == key):
return node
""" then recur on left subtree """
res1 = searchNode(node.left, key)
# node found, no need to look further
if res1:
return res1
""" node is not found in left,
so recur on right subtree """
res2 = searchNode(node.right, key)
return res2
def getLevelUtil(node, data, level):
if (node == None):
return 0
if (node.data == data):
return level
downlevel = getLevelUtil(node.left, data, level + 1)
if (downlevel != 0):
return downlevel
downlevel = getLevelUtil(node.right, data, level + 1)
return downlevel
# Returns level of given data value
def getLevel(node, data):
return getLevelUtil(node, data, 1)
def setLevel(data_loader):
for d in data_loader:
for data in d:
max_level = 0
tree = list(data.keys())[0]
n_nodes = data[tree]#[0]
count = []
numerarNodos(tree, count)
for x in range(0, n_nodes):
level = getLevel(tree, x)
if level > max_level:
max_level = level
if (level):
node = searchNode(tree, x)
node.level = getLevel(tree, x)
else:
print(x, "is not present in tree")
tree_level = []
tree.getTreeLevel(tree, tree_level)
tree_level = [max_level - nodelevel for nodelevel in tree_level]
tree.setTreeLevel(tree, sum(tree_level))
tree.setMaxLevel(tree, max_level)
'''
def StructureLoss(cl_p, original, mult):
if original is None:
return
ce = nn.CrossEntropyLoss(weight = mult)
if original.childs() == 0:
vector = [1, 0, 0]
if original.childs() == 1:
vector = [0, 1, 0]
if original.childs() == 2:
vector = [0, 0, 1]
c = ce(cl_p, torch.tensor(vector, device=device, dtype = torch.float).reshape(1, 3))
return c
'''
def numberNodes(data_loader, batch_size):
n_no = []
qzero = 0
qOne = 0
qtwo = 0
for batch in data_loader:
for treed in batch:
tree = list(treed.keys())[0]
n = treed[tree]
n_no.append(n)
li = []
tree.traverseInorderChilds(tree, li)
zero = [a for a in li if a == 0]
one = [a for a in li if a == 1]
two = [a for a in li if a == 2]
qzero += len(zero)
qOne += len(one)
qtwo += len(two)
qzero /= len(data_loader)*batch_size
qOne /= len(data_loader)*batch_size
qtwo /= len(data_loader)*batch_size
if round(qzero) == 0:
qzero = 1
if round(qOne) == 0:
qOne = 1
if round(qtwo) == 0:
qtwo = 1
mult = torch.tensor([1/round(qzero),1/round(qOne),1/round(qtwo)], device = device)
return mult
class Node:
"""
Class Node
"""
def __init__(self, value, radius, left = None, right = None, level = None, treelevel = None, maxlevel = None):
self.left = left
self.data = value
self.radius = radius
self.right = right
self.children = [self.left, self.right]
self.level = level
self.treelevel = treelevel
self.maxlevel = maxlevel
def agregarHijo(self, children):
if self.right is None:
self.right = children
elif self.left is None:
self.left = children
else:
raise ValueError ("solo arbol binario ")
def isLeaf(self):
if self.right is None and self.left is None:
return True
else:
return False
def isTwoChild(self):
if self.right is not None and self.left is not None:
return True
else:
return False
def isOneChild(self):
if self.isTwoChild():
return False
elif self.isLeaf():
return False
else:
return True
def childs(self):
if self.isLeaf():
return 0
if self.isOneChild():
return 1
else:
return 2
def traverseInorder(self, root):
"""
traverse function will print all the node in the tree.
"""
if root is not None:
self.traverseInorder(root.left)
print (root.data, root.radius)
self.traverseInorder(root.right)
def traverseInorderwl(self, root):
"""
traverse function will print all the node in the tree, including node level and tree level.
"""
if root is not None:
self.traverseInorderwl(root.left)
print (root.data, root.radius, root.level)
#print (root.data, root.radius, root.level, root.treelevel, (root.maxlevel+1-root.level)/root.treelevel)
#print (root.data, root.radius, root.level, root.treelevel, root.level/root.treelevel)
self.traverseInorderwl(root.right)
def getTreeLevel(self, root, c):
"""
"""
if root is not None:
self.getTreeLevel(root.left, c)
c.append(root.level)
self.getTreeLevel(root.right, c)
def setTreeLevel(self, root, c):
"""
"""
if root is not None:
self.setTreeLevel(root.left, c)
root.treelevel = c
self.setTreeLevel(root.right, c)
def setMaxLevel(self, root, m):
"""
"""
if root is not None:
self.setMaxLevel(root.left, m)
root.maxlevel = m
self.setMaxLevel(root.right, m)
def traverseInorderChilds(self, root, l):
"""
"""
if root is not None:
self.traverseInorderChilds(root.left, l)
l.append(root.childs())
self.traverseInorderChilds(root.right, l)
return l
def height(self, root):
# Check if the binary tree is empty
if root is None:
return 0
# Recursively call height of each node
leftAns = self.height(root.left)
rightAns = self.height(root.right)
# Return max(leftHeight, rightHeight) at each iteration
return max(leftAns, rightAns) + 1
# Print nodes at a current level
def printCurrentLevel(self, root, level):
if root is None:
return
if level == 1:
print(root.data, end=" ")
elif level > 1:
self.printCurrentLevel(root.left, level-1)
self.printCurrentLevel(root.right, level-1)
def printLevelOrder(self, root):
h = self.height(root)
for i in range(1, h+1):
self.printCurrentLevel(root, i)
def countNodes(self, root, counter):
if root is not None:
self.countNodes(root.left, counter)
counter.append(root.data)
self.countNodes(root.right, counter)
return counter
def serialize(self, root):
def post_order(root):
if root:
post_order(root.left)
post_order(root.right)
ret[0] += str(root.data)+'_'+ str(root.radius) +';'
else:
ret[0] += '#;'
ret = ['']
post_order(root)
return ret[0][:-1] # remove last ,
def toGraph( self, graph, index, dec, flag, proc=True):
radius = self.radius.cpu().detach().numpy()
if dec:
radius= radius[0]
if flag == 0:
b = True
flag = 1
else:
b = False
graph.add_nodes_from( [ (self.data, {'posicion': radius[0:3], 'radio': radius[3], 'root': b} ) ])
if self.right is not None:
self.right.toGraph( graph, index + 1, dec, flag = 1)#
graph.add_edge( self.data, self.right.data )
if self.left is not None:
self.left.toGraph( graph, 0, dec, flag = 1)#
graph.add_edge( self.data, self.left.data)
else:
return
class Sampler(nn.Module):
def __init__(self, feature_size, hidden_size):
super(Sampler, self).__init__()
self.mlp1 = nn.Linear(feature_size, hidden_size)
self.mlp2mu = nn.Linear(hidden_size, feature_size)
self.mlp2var = nn.Linear(hidden_size, feature_size)
self.LeakyReLu = nn.LeakyReLU()
self.latent_dim = feature_size
self.dropout = nn.Dropout(0.1)
def forward(self, input):
encode = self.LeakyReLu(self.mlp1(input))
#encode = self.dropout(encode)
mu = self.mlp2mu(encode)
logvar = self.mlp2var(encode)
std = logvar.mul(0.5).exp_() # calculate the STDEV
eps = torch.Tensor(std.size()).normal_().cuda() # random normalized noise
KLD_element = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp())
if self.training:
out = torch.cat([eps.mul(std).add_(mu), KLD_element], 1)
else:
out = mu
return out
class InternalEncoder(nn.Module):
def __init__(self, input_size: int, feature_size: int, hidden_size: int):
super(InternalEncoder, self).__init__()
# Encoders atributos
self.attribute_lin_encoder_1 = nn.Linear(input_size,hidden_size)
self.attribute_lin_encoder_2 = nn.Linear(hidden_size,feature_size)
# Encoders derecho e izquierdo
self.right_lin_encoder_1 = nn.Linear(feature_size,hidden_size)
self.right_lin_encoder_2 = nn.Linear(hidden_size,feature_size)
self.left_lin_encoder_1 = nn.Linear(feature_size,hidden_size)
self.left_lin_encoder_2 = nn.Linear(hidden_size,feature_size)
# Encoder final
self.final_lin_encoder_1 = nn.Linear(2*feature_size, feature_size)
# Funciones / Parametros utiles
self.LeakyReLu = nn.LeakyReLU()
self.feature_size = feature_size
def forward(self, input, right_input, left_input):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Encodeo los atributos
attributes = self.attribute_lin_encoder_1(input)
attributes = self.LeakyReLu(attributes)
attributes = self.attribute_lin_encoder_2(attributes)
attributes = self.LeakyReLu(attributes)
# Encodeo el derecho
if right_input is not None:
context = self.right_lin_encoder_1(right_input)
context = self.LeakyReLu(context)
context = self.right_lin_encoder_2(context)
context = self.LeakyReLu(context)
# Encodeo el izquierdo
if left_input is not None:
left = self.left_lin_encoder_1(left_input)
#print("izquierdo", left.shape)
left = self.LeakyReLu(left)
context += self.left_lin_encoder_2(left)
context = self.LeakyReLu(context)
else:
context = torch.zeros(input.shape[0],self.feature_size, requires_grad=True, device=device)
feature = torch.cat((attributes,context), 1)
feature = self.final_lin_encoder_1(feature)
feature = self.LeakyReLu(feature)
return feature
class GRASSEncoder(nn.Module):
def __init__(self, input_size: int, feature_size : int, hidden_size: int):
super(GRASSEncoder, self).__init__()
self.leaf_encoder = InternalEncoder(input_size,feature_size, hidden_size)
self.internal_encoder = InternalEncoder(input_size,feature_size, hidden_size)
self.bifurcation_encoder = InternalEncoder(input_size,feature_size, hidden_size)
self.sample_encoder = Sampler(feature_size = feature_size, hidden_size = hidden_size)
def leafEncoder(self, node, right=None, left = None):
return self.internal_encoder(node, right, left)
def internalEncoder(self, node, right, left = None):
return self.internal_encoder(node, right, left)
def bifurcationEncoder(self, node, right, left):
return self.bifurcation_encoder(node, right, left)
def sampleEncoder(self, feature):
return self.sample_encoder(feature)
class NodeClassifier(nn.Module):
def __init__(self, latent_size : int, hidden_size : int):
super(NodeClassifier, self).__init__()
self.mlp1 = nn.Linear(latent_size, hidden_size)
self.mlp2 = nn.Linear(hidden_size, hidden_size)
self.mlp3 = nn.Linear(hidden_size, 3)
self.LeakyReLu = nn.LeakyReLU()
def forward(self, input_feature):
output = self.mlp1(input_feature)
output = self.LeakyReLu(output)
output = self.mlp2(output)
output = self.LeakyReLu(output)
output = self.mlp3(output)
return output
class SampleDecoder(nn.Module):
""" Decode a randomly sampled noise into a feature vector """
def __init__(self, feature_size, hidden_size):
super(SampleDecoder, self).__init__()
self.mlp1 = nn.Linear(feature_size, hidden_size)
self.mlp2 = nn.Linear(hidden_size, hidden_size)
self.mlp3 = nn.Linear(hidden_size, feature_size)
#self.mlp4 = nn.Linear(hidden_size, feature_size)
#self.mlp5 = nn.Linear(feature_size, feature_size)
#self.dropout = nn.Dropout(0.1)
self.LeakyReLu = nn.LeakyReLU()
self.tanh = nn.Tanh()
def forward(self, input_feature):
output = self.LeakyReLu(self.mlp1(input_feature))
#output = self.dropout (output)
output = self.tanh(self.mlp2(output))
output = self.tanh(self.mlp3(output))
#output = self.LeakyReLu(self.mlp4(output))
#output = self.LeakyReLu(self.mlp5(output))
return output
class Decoder(nn.Module):
""" Decode an input (parent) feature into a left-child and a right-child feature """
def __init__(self, latent_size : int, hidden_size : int):
super(Decoder, self).__init__()
self.mlp = nn.Linear(latent_size,hidden_size)
self.mlp_left = nn.Linear(hidden_size, hidden_size)
self.mlp_left2 = nn.Linear(hidden_size, latent_size)
self.mlp_right = nn.Linear(hidden_size, hidden_size)
self.mlp_right2 = nn.Linear(hidden_size, latent_size)
self.mlp2 = nn.Linear(hidden_size,latent_size)
#self.mlp4 = nn.Linear(hidden_size,latent_size)
self.mlp3 = nn.Linear(latent_size,4)
self.LeakyReLu = nn.LeakyReLU()
self.tanh = nn.Tanh()
#self.dropout = nn.Dropout(0.5)
def common_branch(self, parent_feature):
vector = self.mlp(parent_feature)
vector = self.LeakyReLu(vector)
return vector
def attr_branch(self, vector):
vector = self.mlp2(vector)
vector = self.LeakyReLu(vector)
#vector = self.dropout(vector)
vector = self.mlp3(vector)
vector = self.LeakyReLu(vector)
return vector
def right_branch(self, vector):
right_feature = self.mlp_right(vector)
right_feature = self.LeakyReLu(right_feature)
#right_feature = self.dropout(right_feature)
right_feature = self.mlp_right2(right_feature)
right_feature = self.LeakyReLu(right_feature)
return right_feature
def left_branch(self, vector):
left_feature = self.mlp_left(vector)
left_feature = self.LeakyReLu(left_feature)
#left_feature = self.dropout(left_feature)
left_feature = self.mlp_left2(left_feature)
left_feature = self.LeakyReLu(left_feature)
return left_feature
def forward(self, parent_feature):
vector = self.common_branch(parent_feature)
attr_vector = self.attr_branch(vector)
return attr_vector
def forward1(self, parent_feature):
vector = self.common_branch(parent_feature)
attr_vector = self.attr_branch(vector)
right_vector = self.right_branch(vector)
return right_vector, attr_vector
def forward2(self, parent_feature):
vector = self.common_branch(parent_feature)
attr_vector = self.attr_branch(vector)
right_vector = self.right_branch(vector)
left_vector = self.left_branch(vector)
return left_vector, right_vector, attr_vector
class GRASSDecoder(nn.Module):
def __init__(self, latent_size : int, hidden_size: int, mult: torch.Tensor):
super(GRASSDecoder, self).__init__()
self.decoder = Decoder(latent_size, hidden_size)
self.node_classifier = NodeClassifier(latent_size, hidden_size)
self.sample_decoder = SampleDecoder(feature_size = latent_size, hidden_size = hidden_size)
self.mseLoss = nn.MSELoss() # pytorch's mean squared error loss
self.ceLoss = nn.CrossEntropyLoss(weight = mult) # pytorch's cross entropy loss (NOTE: no softmax is needed before)
self.alfa = 0.3
def featureDecoder(self, feature):
return self.decoder.forward(feature)
def internalDecoder(self, feature):
return self.decoder.forward1(feature)
def bifurcationDecoder(self, feature):
return self.decoder.forward2(feature)
def nodeClassifier(self, feature):
return self.node_classifier(feature)
def sampleDecoder(self, feature):
return self.sample_decoder(feature)
def calcularLossAtributo(self, nodo, radio):
if nodo is None:
return
else:
nodo = torch.stack(nodo)
#print("nodo", radio)
l = [self.mseLoss(b.reshape(1,4), gt.reshape(1,4)).mul(1-self.alfa) for b, gt in zip(radio.reshape(-1,4), nodo.reshape(-1,4))]
return l
def calcularLossAtributo2(self, nodo, radio):
if nodo is None:
return
else:
nodo = torch.stack([nodo[:3]])
radio = radio[0][:3]
l = [self.mseLoss(b.reshape(1,3), gt.reshape(1,3)).mul(1-self.alfa) for b, gt in zip(radio.reshape(-1,3), nodo.reshape(-1,3))]
return l
def classifyLossEstimator(self, label_vector, original):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if original is None:
return
else:
v = []
for o in original:
if o == 0:
vector = torch.tensor([1, 0, 0], device = device, dtype = torch.float)
if o == 1:
vector = torch.tensor([0, 1, 0], device = device, dtype = torch.float)
if o == 2:
vector = torch.tensor([0, 0, 1], device = device, dtype = torch.float)
v.append(vector)
v = torch.stack(v)
l = [self.ceLoss(b.reshape(1,3), gt.reshape(1,3)).mul(self.alfa) for b, gt in zip(label_vector.reshape(-1,3), v.reshape(-1,3))]
return l
def vectorAdder(self, v1, v2):
v = v1.add(v2)
return v
def vectorMult(self, m, v):
#print("v", v)
#print("m", m)
z = zip(v, m)
r = []
for c, d in z:
r.append(torch.mul(c, d))
return r