forked from kimoyami/PRDC
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprdc.py
165 lines (141 loc) · 5.49 KB
/
prdc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import copy
from scipy.spatial import KDTree
import torch
import torch.nn.functional as F
from net.actor import Actor
from net.critic import Critic
class PRDC(object):
def __init__(
self,
data,
state_dim,
action_dim,
max_action,
device,
discount=0.99,
tau=0.005,
policy_noise=0.2,
noise_clip=0.5,
policy_freq=2,
actor_lr=3e-4,
critic_lr=3e-4,
alpha=2.5,
beta=2, # [beta* state, action]
k=1,
):
self.device = torch.device(device)
self.actor = Actor(state_dim, action_dim, max_action).to(self.device)
self.actor_target = copy.deepcopy(self.actor)
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
self.critic = Critic(state_dim, action_dim).to(self.device)
self.critic_target = copy.deepcopy(self.critic)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)
self.action_dim = action_dim
self.max_action = max_action
self.discount = discount
self.tau = tau
self.policy_noise = policy_noise
self.noise_clip = noise_clip
self.policy_freq = policy_freq
self.alpha = alpha
self.k = k
self.total_it = 0
# KD-Tree
self.beta = beta
self.data = data
self.kd_tree = KDTree(data)
self.models = {
"actor": self.actor,
"critic": self.critic,
"actor_target": self.actor_target,
"critic_target": self.critic_target,
"actor_optimizer": self.actor_optimizer,
"critic_optimizer": self.critic_optimizer,
}
print("state_dim:", state_dim, ", action_dim: ", action_dim)
@torch.no_grad()
def select_action(self, state):
state = torch.FloatTensor(state.reshape(1, -1)).to(self.device)
return self.actor(state).cpu().data.numpy().flatten()
def train(self, replay_buffer, batch_size=256):
self.total_it += 1
tb_statics = dict()
# Sample replay buffer
state, action, reward, next_state, not_done = replay_buffer.sample(batch_size)
with torch.no_grad():
# Select action according to policy and add clipped noise
noise = (torch.randn_like(action) * self.policy_noise).clamp(
-self.noise_clip, self.noise_clip
)
next_action = (self.actor_target(next_state) + noise).clamp(
-self.max_action, self.max_action
)
# Compute the target Q value
target_Q1, target_Q2 = self.critic_target(next_state, next_action)
target_Q = torch.min(target_Q1, target_Q2)
target_Q = reward + not_done * self.discount * target_Q
# Get current Q estimates
current_Q1, current_Q2 = self.critic(state, action)
# Compute critic loss
critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(
current_Q2, target_Q
)
tb_statics.update({"critic_loss": critic_loss.item()})
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Delayed policy updates
if self.total_it % self.policy_freq == 0:
# Compute actor loss
pi = self.actor(state)
Q = self.critic.Q1(state, pi)
lmbda = self.alpha / Q.abs().mean().detach()
actor_loss = -lmbda * Q.mean()
## Get the nearest neighbor
key = torch.cat([self.beta * state, pi], dim=1).detach().cpu().numpy()
_, idx = self.kd_tree.query(key, k=[self.k], workers=-1)
## Calculate the regularization
nearest_neightbour = (
torch.tensor(self.data[idx][:, :, -self.action_dim :])
.squeeze(dim=1)
.to(self.device)
)
dc_loss = F.mse_loss(pi, nearest_neightbour)
# Optimize the actor
combined_loss = actor_loss + dc_loss
self.actor_optimizer.zero_grad()
combined_loss.backward()
self.actor_optimizer.step()
tb_statics.update(
{
"dc_loss": dc_loss.item(),
"actor_loss": actor_loss.item(),
"combined_loss": combined_loss.item(),
"Q_value": torch.mean(Q).item(),
"lmbda": lmbda,
}
)
# Update the frozen target models
for param, target_param in zip(
self.critic.parameters(), self.critic_target.parameters()
):
target_param.data.copy_(
self.tau * param.data + (1 - self.tau) * target_param.data
)
for param, target_param in zip(
self.actor.parameters(), self.actor_target.parameters()
):
target_param.data.copy_(
self.tau * param.data + (1 - self.tau) * target_param.data
)
return tb_statics
def save(self, model_path):
state_dict = dict()
for model_name, model in self.models.items():
state_dict[model_name] = model.state_dict()
torch.save(state_dict, model_path)
def load(self, model_path):
state_dict = torch.load(model_path)
for model_name, model in self.models.items():
model.load_state_dict(state_dict[model_name])