forked from ZRZ-Unknow/GENTLE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gentle.py
201 lines (174 loc) · 7.19 KB
/
train_gentle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import pathlib
import numpy as np
import click
import json
import torch
import random
import multiprocessing as mp
from itertools import product
from tensorboardX import SummaryWriter
import ast
from rlkit.envs import ENVS
from rlkit.envs.wrappers import NormalizedBoxEnv
from rlkit.torch.sac.policies import TanhGaussianPolicy
from rlkit.torch.networks import FlattenMlp
from rlkit.torch.autoencoder import MlpEncoder, MlpDecoder
from rlkit.torch.multi_task_dynamics import MultiTaskDynamics
from rlkit.torch.sac.agent import Agent
from rlkit.torch.sac.policies import ContextPolicyWrapper
from rlkit.launchers.launcher_util import setup_logger
import rlkit.torch.pytorch_util as ptu
from configs.default import default_config
from numpy.random import default_rng
from rlkit.torch.algo.gentle import GENTLE
rng = default_rng()
def global_seed(seed=0):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def experiment(variant, seed=None):
env = NormalizedBoxEnv(ENVS[variant['env_name']](**variant['env_params']))
if seed is not None:
global_seed(seed)
env.seed(seed)
tasks = env.get_all_task_idx()
obs_dim = int(np.prod(env.observation_space.shape))
action_dim = int(np.prod(env.action_space.shape))
reward_dim = 1
obs_normalizer = ptu.RunningMeanStd(shape=obs_dim)
# instantiate networks
latent_dim = variant['latent_size']
context_encoder_input_dim = 2 * obs_dim + action_dim + reward_dim if variant['algo_params']['use_next_obs_in_context'] else obs_dim + action_dim + reward_dim
context_encoder_output_dim = latent_dim * 2 if variant['algo_params']['use_information_bottleneck'] else latent_dim
net_size = variant['net_size']
use_next_obs_in_context = variant['algo_params']['use_next_obs_in_context']
variant['algo_params']['context_dim'] = context_encoder_input_dim
ptu.set_gpu_mode(variant['util_params']['use_gpu'], variant['util_params']['gpu_id'])
context_encoder = MlpEncoder(
hidden_sizes=[net_size, net_size, net_size],
input_size=context_encoder_input_dim,
output_size=context_encoder_output_dim,
output_activation=torch.tanh,
batch_attention=False,
)
qf1 = FlattenMlp(
hidden_sizes=[net_size, net_size, net_size],
input_size=obs_dim + action_dim + latent_dim,
output_size=1,
)
qf2 = FlattenMlp(
hidden_sizes=[net_size, net_size, net_size],
input_size=obs_dim + action_dim + latent_dim,
output_size=1,
)
context_decoder = MlpDecoder(hidden_size=net_size,
num_hidden_layers=3,
z_dim=latent_dim,
action_dim=action_dim,
obs_dim=obs_dim,
reward_dim=1,
use_next_obs_in_context=use_next_obs_in_context)
if use_next_obs_in_context:
task_dynamics = MultiTaskDynamics(num_tasks=variant['n_train_tasks'],
hidden_size=net_size,
num_hidden_layers=3,
action_dim=action_dim,
obs_dim=obs_dim,
reward_dim=1,
use_next_obs_in_context=use_next_obs_in_context,
ensemble_size=variant['algo_params']['ensemble_size'],
dynamics_weight_decay=[2.5e-5, 5e-5, 7.5e-5, 7.5e-5])
else:
task_dynamics = MultiTaskDynamics(num_tasks=variant['n_train_tasks'],
hidden_size=net_size,
num_hidden_layers=2,
action_dim=action_dim,
obs_dim=obs_dim,
reward_dim=1,
use_next_obs_in_context=use_next_obs_in_context,
ensemble_size=variant['algo_params']['ensemble_size'],
dynamics_weight_decay=[2.5e-5, 5e-5, 7.5e-5])
task_dynamics.load('/data/zrz/gentle_data/asset/dynamics/'+variant['env_name']+'/'+f'expert_seed{seed}')
policy = TanhGaussianPolicy(
hidden_sizes=[net_size, net_size, net_size],
obs_dim=obs_dim + latent_dim,
latent_dim=latent_dim,
action_dim=action_dim,
)
context_policy = ContextPolicyWrapper(policy, latent_dim)
agent = Agent(
latent_dim,
context_encoder,
policy,
**variant['algo_params']
)
agent = [agent, context_policy]
algorithm = GENTLE(
env=env,
train_tasks=list(tasks[:variant['n_train_tasks']]),
eval_tasks=list(tasks[-variant['n_eval_tasks']:]),
nets=[agent, qf1, qf2, context_decoder, task_dynamics],
latent_dim=latent_dim,
obs_normalizer=obs_normalizer,
**variant['algo_params']
)
# optional GPU mode
if ptu.gpu_enabled():
algorithm.to()
# debugging triggers a lot of printing and logs to a debug directory
DEBUG = variant['util_params']['debug']
os.environ['DEBUG'] = str(int(DEBUG))
# create logging directory
# TODO support Docker
exp_id = 'debug' if DEBUG else None
experiment_log_dir = setup_logger(
variant['env_name'],
variant=variant,
exp_id=exp_id,
base_log_dir=variant['util_params']['base_log_dir'],
seed=seed,
snapshot_mode="all",
algo_name=variant['output_prefix']+variant['algo_type']
)
tb_writer = SummaryWriter(experiment_log_dir)
algorithm.train(tb_writer)
def deep_update_dict(fr, to):
''' update dict of dicts with new values '''
# assume dicts have same keys
for k, v in fr.items():
if type(v) is dict:
deep_update_dict(v, to[k])
else:
to[k] = v
return to
@click.command()
@click.argument('config', default=None)
@click.option('--gpu', default=0)
@click.option('--debug', default=0)
@click.option('--algo_type', default='gentle')
@click.option('--seed_list', default=[0])
@click.option('--output_prefix', default='')
def main(config, gpu, debug, algo_type, seed_list, output_prefix):
variant = default_config
if config:
with open(os.path.join(config)) as f:
exp_params = json.load(f)
variant = deep_update_dict(exp_params, variant)
variant['util_params']['gpu_id'] = gpu
variant['util_params']['debug'] = debug
variant['algo_type'] = algo_type
variant['output_prefix'] = output_prefix
variant['util_params']['base_log_dir'] = './logs'
# multi-processing
if len(seed_list) > 1:
if isinstance(seed_list, str):
seed_list = ast.literal_eval(seed_list)
p = mp.Pool(len(seed_list))
p.starmap(experiment, product([variant], seed_list))
else:
experiment(variant, seed=seed_list[0])
if __name__ == "__main__":
main()