forked from open-mmlab/mmrazor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_flops.py
90 lines (75 loc) · 2.91 KB
/
get_flops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import numpy as np
import torch
from mmcv import Config, DictAction
from mmcv.cnn.utils import get_model_complexity_info
from mmrazor.models import build_algorithm
def parse_args():
parser = argparse.ArgumentParser(description='Get model flops and params')
parser.add_argument('config', help='config file path')
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=[224, 224],
help='input image size')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--size-divisor',
type=int,
default=32,
help='Pad the input image, the minimum size that is divisible '
'by size_divisor, -1 means do not pad the image.')
args = parser.parse_args()
return args
def main():
args = parse_args()
if len(args.shape) == 1:
h = w = args.shape[0]
elif len(args.shape) == 2:
h, w = args.shape
else:
raise ValueError('invalid input shape')
orig_shape = (3, h, w)
divisor = args.size_divisor
if divisor > 0:
h = int(np.ceil(h / divisor)) * divisor
w = int(np.ceil(w / divisor)) * divisor
input_shape = (3, h, w)
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
algorithm = build_algorithm(cfg.algorithm)
if torch.cuda.is_available():
algorithm.cuda()
algorithm.eval()
if hasattr(algorithm.architecture, 'forward_dummy'):
algorithm.architecture.forward = algorithm.architecture.forward_dummy
else:
raise NotImplementedError(
'FLOPs counter is currently not currently supported with {}'.
format(algorithm.architecture.__class__.__name__))
flops, params = get_model_complexity_info(algorithm.architecture,
input_shape)
split_line = '=' * 30
if divisor > 0 and \
input_shape != orig_shape:
print(f'{split_line}\nUse size divisor set input shape '
f'from {orig_shape} to {input_shape}\n')
print(f'{split_line}\nInput shape: {input_shape}\n'
f'Flops: {flops}\nParams: {params}\n{split_line}')
print('!!!Please be cautious if you use the results in papers. '
'You may need to check if all ops are supported and verify that the '
'flops computation is correct.')
if __name__ == '__main__':
main()