-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCNNTrain.m
181 lines (165 loc) · 6.89 KB
/
CNNTrain.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
function opts = CNNTrain(varargin)
opts.expDir = 'data/WSSaliency' ;
opts.dataDir = [pwd '/Dataset/Graz02'];
opts.modelType = 'fcn8s' ;
opts.FCNModelPath = 'data/models/imagenet-vgg-verydeep-16.mat' ;
opts.DataSetName = 'Graz02';
opts.Lambda = [1 1];
opts.GPUID = 1;
opts.ClassName = [];
opts.ClassifierModelPath = [];
opts.randomSeed = 0;
opts.learningRate = 0.00001 * ones(1, 10);
opts.IsReturnData = false;
[opts, varargin] = vl_argparse(opts, varargin) ;
if isempty(opts.ClassName) || isempty(opts.ClassifierModelPath)
error('No Class Name Specified Or No Classifier Model Path Specified!!')
end
if length(opts.Lambda) == 1
opts.Lambda = [opts.Lambda 0];
end
opts.expDir = New_mkdir([opts.expDir '/' opts.ClassName '/Lambda' num2str(opts.Lambda(1)) '&' num2str(opts.Lambda(2))]);
% training options (SGD)
opts.train.batchSize = 20 ;
opts.train.randomSeed = 0;
opts.train.numSubBatches = 5;
opts.train.continue = true ;
opts.train.gpus = opts.GPUID;
opts.train.prefetch = true ;
opts.train.expDir = opts.expDir ;
opts.train.learningRate = opts.learningRate;
opts.train.numEpochs = numel(opts.train.learningRate) ;
[opts] = vl_argparse(opts, varargin) ;
IsModelExist = exist([opts.expDir '/' sprintf('net-epoch-%d.mat', numel(opts.train.learningRate))], 'file');
if ~IsModelExist || opts.IsReturnData
% -------------------------------------------------------------------------
% Setup data
% -------------------------------------------------------------------------
imdb = SetupDataset(opts);
train = find(imdb.images.set == 1);
if IsModelExist
return;
end
% -------------------------------------------------------------------------
% Setup model
% -------------------------------------------------------------------------
% Get initial model from VGG-VD-16
InitialModelPath = [opts.expDir '/net-epoch-0.mat'];
if ~exist(InitialModelPath, 'file')
net = fcnInitializeSaliencyModel('sourceModelPath', opts.FCNModelPath) ;
if any(strcmp(opts.modelType, {'fcn16s', 'fcn8s'}))
% upgrade model to FCN16s
net = fcnInitializeSaliencyModel16s(net) ;
end
if strcmp(opts.modelType, 'fcn8s')
% upgrade model fto FCN8s
net = fcnInitializeSaliencyModel8s(net) ;
end
[net, AvgImage] = InitializeWSModel(net, opts);
net_ = net ;
net = net_.saveobj() ;
save(InitialModelPath, 'net', 'AvgImage');
clear net_ net
end
save([opts.expDir '/opts.mat'], 'opts');
% -------------------------------------------------------------------------
% Train
% -------------------------------------------------------------------------
% Launch SGD
net = load(InitialModelPath, 'net', 'AvgImage') ;
AvgImage = net.AvgImage;
net = dagnn.DagNN.loadobj(net.net) ;
net.layers(net.getLayerIndex('objective')).block.SetLambdas([1 opts.Lambda]);
BGSegMaskList = zeros([size(AvgImage,1 ) size(AvgImage,2) , 1, ceil(opts.train.batchSize/opts.train.numSubBatches)], 'single');
FunHand = @(imdb,batch)getBatch(imdb, batch, AvgImage, BGSegMaskList, opts);
WS_CNN_Train(net, imdb, FunHand, ...
opts.train, ....
'train', train, ...
'val', [], ...
opts.train) ;
end
end
function y = getBatch(imdb, images, AvgImage, BGSegMaskList, opts)
% GET_BATCH Load, preprocess, and pack images for CNN evaluation
ImageList = imdb.ImageList(:,:,:,images);
ImageLabelList = imdb.ImageLabelList(images);
BGSegMaskList = BGSegMaskList(:,:,:,1:sum(ImageLabelList == 0));
if ~isempty(opts.train.gpus) > 0
ImageList = gpuArray(ImageList);
ImageLabelList = gpuArray(ImageLabelList);
AvgImage = gpuArray(AvgImage);
BGSegMaskList = gpuArray(BGSegMaskList);
end
ImageList = bsxfun(@minus, ImageList, AvgImage);
y = {'input', ImageList, 'AvgImage', AvgImage, ...
'ImageLabel', ImageLabelList, 'BGSegMask', BGSegMaskList};
end
function imdb = SetupDataset(opts)
DataAugFunList = {@(X)(X), @(X)flip(X,1), @(X)flip(X,2), @(X)rot90(X), @(X)rot90(rot90(X)), @(X)rot90(rot90(rot90(X)))};
Dataset = load([opts.dataDir '/TrainTestSplit.mat'], 'TrainSet', 'TestSet');
TrainSet = Dataset.TrainSet;
TestSet = Dataset.TestSet;
ClassName = opts.ClassName;
ClassID = strcmp({TrainSet.ClassName}, ClassName);
TrainSet = TrainSet(ClassID);
NumImgs = numel(TrainSet.ImageName) * 6;
imdb.ImageList = -ones(384, 384, 3, NumImgs, 'single');
imdb.ImageLabelList = -ones(NumImgs, 1, 'single');
Count = 0;
for i = 1:numel(TrainSet.ImageName)
Image = single(imresize(imread([opts.dataDir '/' TrainSet.ImageName{i}]), [384 384]));
ImageLabel = TrainSet.ImageLabel(i);
for DataAugFun = DataAugFunList
Count = Count + 1;
TempImage = DataAugFun{1}(Image);
imdb.ImageList(:,:,:,Count) = TempImage;
imdb.ImageLabelList(Count) = ImageLabel;
end
end
imdb.images.set = uint8(ones(1, numel(TrainSet.ImageName) * 6));
end
function [net, AvgImage]= InitializeWSModel(net, opts)
ObjectClassiferNet = load(opts.ClassifierModelPath);
AvgImage = ObjectClassiferNet.AvgImage;
ObjectClassiferNet = rmfield(ObjectClassiferNet, 'AvgImage');
ObjectClassiferNet = dagnn.DagNN.loadobj(ObjectClassiferNet);
LayerNameList = {ObjectClassiferNet.layers.name};
LayerRenameList = strcat('Classifier_', LayerNameList);
for i = 1:length(LayerNameList)
ObjectClassiferNet.renameLayer(LayerNameList{i}, LayerRenameList{i});
end
VarNameList = {ObjectClassiferNet.vars.name};
VarRenameList = strcat('Classifier_', VarNameList);
for i = 1:length(VarNameList)
ObjectClassiferNet.renameVar(VarNameList{i}, VarRenameList{i});
end
net.meta.normalization = [];
net.renameVar('prediction', 'RawSalScore');
net.addLayer('ObjSigmoidNormize', ...
dagnn.Sigmoid(), 'RawSalScore', 'ObjSalPred');
net.addLayer('BGSigmoidNormize', ...
ElementProcess('Scale', -1, 'Shift', 1), 'ObjSalPred', 'BGSalPred');
net.addLayer('SalMulImage', ...
SalMulImage(), ...
{'BGSalPred', 'ObjSalPred', 'input', 'AvgImage', 'ImageLabel'}, ...
{ObjectClassiferNet.vars(1).name, 'label', 'BGSegSaliency', 'FGSegSaliency'});
for i = 1:length(ObjectClassiferNet.layers)
Layer = ObjectClassiferNet.layers(i);
net.addLayer(Layer.name, ...
Layer.block, ...
Layer.inputs, ...
Layer.outputs, ...
Layer.params);
ParamIndex1 = net.getParamIndex(Layer.params);
ParamIndex2 = ObjectClassiferNet.getParamIndex(Layer.params);
for j = 1:length(ParamIndex1)
net.params(ParamIndex1(j)).value = ObjectClassiferNet.params(ParamIndex2(j)).value;
net.params(ParamIndex1(j)).learningRate = 0;
net.params(ParamIndex1(j)).weightDecay = 0;
end
end
net.setLayerInputs('objective', {net.vars(end).name, 'label', 'BGSegSaliency', 'BGSegMask', 'FGSegSaliency'});
net.layers(net.getLayerIndex('objective')).block = EuclidEntropyLoss('NumLosses', 3);
net.removeLayer('accuracy');
net.rebuild();
end