-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
206 lines (172 loc) · 8.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import argparse
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from src.dataset import CocoDataset, Resizer, Normalizer, Augmenter, collater
from src.model import SparseSwinDet
from tensorboardX import SummaryWriter
import shutil
import numpy as np
from tqdm.autonotebook import tqdm
def get_args():
parser = argparse.ArgumentParser("SparseSwin: Swin transformer with sparse transformer block")
parser.add_argument("--sparseswin_type", type=str, help="SparseSwin Type: tiny, small, or base")
parser.add_argument("--image_size", type=int, default=512, help="The common width and height for all images")
parser.add_argument("--batch_size", type=int, default=8, help="The number of images per batch")
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument('--alpha', type=float, default=0.25)
parser.add_argument('--gamma', type=float, default=1.5)
parser.add_argument("--num_epochs", type=int, default=500)
parser.add_argument("--test_interval", type=int, default=1, help="Number of epoches between testing phases")
parser.add_argument("--es_min_delta", type=float, default=0.0,
help="Early stopping's parameter: minimum change loss to qualify as an improvement")
parser.add_argument("--es_patience", type=int, default=0,
help="Early stopping's parameter: number of epochs with no improvement after which training will be stopped. Set to 0 to disable this technique.")
parser.add_argument("--data_path", type=str, default="data/", help="the root folder of dataset")
parser.add_argument("--log_path", type=str, default="tensorboard/signatrix_sparseswin_coco")
parser.add_argument("--saved_path", type=str, default="trained_models")
args = parser.parse_args()
return args
def train(opt):
num_gpus = 1
if torch.cuda.is_available():
num_gpus = torch.cuda.device_count()
torch.cuda.manual_seed(123)
else:
torch.manual_seed(123)
training_params = {
"batch_size": opt.batch_size * num_gpus,
"shuffle": True,
"drop_last": True,
"collate_fn": collater,
"num_workers": 2
}
test_params = {
"batch_size": opt.batch_size,
"shuffle": False,
"drop_last": False,
"collate_fn": collater,
"num_workers": 2
}
training_set = CocoDataset(
root_dir=opt.data_path,
set="train2017",
transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()])
)
training_generator = DataLoader(training_set, **training_params)
test_set = CocoDataset(
root_dir=opt.data_path, set="val2017",
transform=transforms.Compose([Normalizer(), Resizer()])
)
test_generator = DataLoader(test_set, **test_params)
device = torch.device('cuda')
model = SparseSwinDet(
sparseswin_type=opt.sparseswin_type,
num_classes=training_set.num_classes(),
input_resolution=opt.image_size,
device=device
).to(device)
if os.path.isdir(opt.log_path):
shutil.rmtree(opt.log_path)
os.makedirs(opt.log_path)
if not os.path.isdir(opt.saved_path):
os.makedirs(opt.saved_path)
writer = SummaryWriter(opt.log_path)
if torch.cuda.is_available():
model = model.cuda()
# model = nn.DataParallel(model)
optimizer = torch.optim.Adam(model.parameters(), opt.lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True)
best_loss = 1e5
best_epoch = 0
model.train()
num_iter_per_epoch = len(training_generator)
for epoch in range(opt.num_epochs):
model.train()
# if torch.cuda.is_available():
# model.module.freeze_bn()
# else:
# model.freeze_bn()
epoch_loss = []
progress_bar = tqdm(training_generator)
for iter, data in enumerate(progress_bar):
# try:
optimizer.zero_grad()
if torch.cuda.is_available():
cls_loss, reg_loss = model([data['img'].cuda().float(), data['annot'].cuda()])
else:
cls_loss, reg_loss = model([data['img'].float(), data['annot']])
cls_loss = cls_loss.mean()
reg_loss = reg_loss.mean()
loss = cls_loss + reg_loss
if loss == 0:
continue
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
optimizer.step()
epoch_loss.append(float(loss))
total_loss = np.mean(epoch_loss)
progress_bar.set_description(
'Epoch: {}/{}. Iteration: {}/{}. Cls loss: {:.5f}. Reg loss: {:.5f}. Batch loss: {:.5f} Total loss: {:.5f}'.format(
epoch + 1, opt.num_epochs, iter + 1, num_iter_per_epoch, cls_loss, reg_loss, loss,
total_loss))
writer.add_scalar('Train/Total_loss', total_loss, epoch * num_iter_per_epoch + iter)
writer.add_scalar('Train/Regression_loss', reg_loss, epoch * num_iter_per_epoch + iter)
writer.add_scalar('Train/Classfication_loss (focal loss)', cls_loss, epoch * num_iter_per_epoch + iter)
# except Exception as e:
# print(e)
# continue
scheduler.step(np.mean(epoch_loss))
if epoch % opt.test_interval == 0:
model.eval()
loss_regression_ls = []
loss_classification_ls = []
for iter, data in enumerate(test_generator):
with torch.no_grad():
if torch.cuda.is_available():
cls_loss, reg_loss = model([data['img'].cuda().float(), data['annot'].cuda()])
else:
cls_loss, reg_loss = model([data['img'].float(), data['annot']])
cls_loss = cls_loss.mean()
reg_loss = reg_loss.mean()
loss_classification_ls.append(float(cls_loss))
loss_regression_ls.append(float(reg_loss))
cls_loss = np.mean(loss_classification_ls)
reg_loss = np.mean(loss_regression_ls)
loss = cls_loss + reg_loss
print(
'Epoch: {}/{}. Classification loss: {:1.5f}. Regression loss: {:1.5f}. Total loss: {:1.5f}'.format(
epoch + 1, opt.num_epochs, cls_loss, reg_loss,
np.mean(loss)))
writer.add_scalar('Test/Total_loss', loss, epoch)
writer.add_scalar('Test/Regression_loss', reg_loss, epoch)
writer.add_scalar('Test/Classfication_loss (focal loss)', cls_loss, epoch)
if loss + opt.es_min_delta < best_loss:
best_loss = loss
best_epoch = epoch
torch.save(model, os.path.join(opt.saved_path, "signatrix_sparseswin_coco.pth"))
# dummy_input = torch.rand(opt.batch_size, 3, opt.image_size, opt.image_size)
# if torch.cuda.is_available():
# dummy_input = dummy_input.cuda()
# if isinstance(model, nn.DataParallel):
# model.module.backbone_net.model.set_swish(memory_efficient=False)
# torch.onnx.export(model.module, dummy_input,
# os.path.join(opt.saved_path, "signatrix_efficientdet_coco.onnx"),
# verbose=False)
# model.module.backbone_net.model.set_swish(memory_efficient=True)
# else:
# model.backbone_net.model.set_swish(memory_efficient=False)
# torch.onnx.export(model, dummy_input,
# os.path.join(opt.saved_path, "signatrix_efficientdet_coco.onnx"),
# verbose=False)
# model.backbone_net.model.set_swish(memory_efficient=True)
# Early stopping
if epoch - best_epoch > opt.es_patience > 0:
print("Stop training at epoch {}. The lowest loss achieved is {}".format(epoch, loss))
break
writer.close()
if __name__ == "__main__":
opt = get_args()
train(opt)