-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
232 lines (217 loc) · 9.05 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
import time
import os
import wandb
import logging
from torchinfo import summary
from deepspeed.ops.adam import FusedAdam
from transformers import get_cosine_schedule_with_warmup
from dataset.validation import val_set_pretrain
os.environ["WANDB_API_KEY"] = "d567cc8410bf55e544b5605cc13a300c607c77b1"
os.environ["WANDB_MODE"] = "offline"
class Trainer:
def __init__(self, config, raw_model, train_loader, tokenizer, accelerator):
self.config = config
self.raw_model = raw_model
self.train_loader = train_loader
self.tokenizer = tokenizer
self.accelerator = accelerator
self.train_and_eval = config["train"].get("train_and_eval", False)
self.gradient_accumulation_steps = config["train"].get(
"gradient_accumulation_steps", 1
)
self.lr_scheduler_factor = (
accelerator.num_processes / accelerator.gradient_accumulation_steps
)
self.log_interval = (
self.config["log_interval"] * accelerator.gradient_accumulation_steps
)
self.eval_interval = (
self.config["eval_interval"] * accelerator.gradient_accumulation_steps
)
self.save_interval = (
self.config["save_interval"] * accelerator.gradient_accumulation_steps
)
self.work_dir = self.config["work_dir"]
#self.ckpt_dir = self.config["ckpt_dir"]
#self.is_stage3 = self.config["train"]["is_stage3"]
#self.need_ckpt = self.config["train"]["need_ckpt"]
# self.get_model_info()
if accelerator.is_main_process:
wandb.init(project=self.config["project_name"])
def get_model_info(self):
with torch.no_grad():
summary(
self.raw_model.cuda(),
input_data=torch.ones(1, 64, dtype=torch.int64).cuda(),
)
def get_optimizer(self):
no_decay = ["bias", "LayerNorm.weight", "layernorm.weight"]
if self.config["train"].get("use_lora", False):
optimizer_grouped_parameters = self.raw_model.parameters()
else:
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in self.raw_model.named_parameters()
if not any(nd in n for nd in no_decay)
],
"weight_decay": self.config["train"]["weight_decay"],
},
{
"params": [
p
for n, p in self.raw_model.named_parameters()
if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
self.optim = FusedAdam(
optimizer_grouped_parameters,
lr=self.config["train"]["lr"],
betas=(0.9, 0.95),
)
def get_lr_scheduler(self):
self.scheduler = get_cosine_schedule_with_warmup(
self.optim,
num_warmup_steps=self.config["train"]["num_warmup_steps"]
* self.lr_scheduler_factor,
num_training_steps=self.config["train"]["num_training_steps"]
* self.lr_scheduler_factor,
)
def prepare(self):
(
_,
self.model,
self.optim,
self.scheduler,
) = self.accelerator.prepare(
self.train_loader, self.raw_model, self.optim, self.scheduler
)
self.optim.zero_grad()
self.global_step = 0
try:
self.accelerator.load_state(self.work_dir)
self.global_step = self.scheduler.scheduler._step_count - 1
self.global_step = self.global_step // self.accelerator.num_processes
logging.warning("Restored ckpt from {}".format(self.work_dir))
except:
logging.warning("No ckpt found in {}".format(self.work_dir))
if self.global_step > 0:
skip_steps = self.global_step * self.gradient_accumulation_steps
logging.warning("Skiped {} steps.".format(skip_steps))
self.train_loader_skiped = self.accelerator.skip_first_batches(self.train_loader, num_batches=skip_steps)
else:
self.train_loader_skiped = self.train_loader
self.accelerator.wait_for_everyone()
def train_step(self, batch):
out = self.model(**batch)
total_loss = out.loss
losses = {"total_loss": total_loss}
self.accelerator.backward(total_loss)
self.optim.step()
self.scheduler.step()
self.optim.zero_grad()
return losses
def train(self):
self.get_optimizer()
self.get_lr_scheduler()
self.prepare()
self.start_time = time.time()
self.epoch = 0
self.data_step = 0
while True:
if self.data_step >= self.config["train"]["num_training_steps"]:
break
if self.epoch == 0:
train_loader = self.train_loader_skiped
else:
train_loader = self.train_loader
for batch in train_loader:
# end training
if self.data_step >= self.config["train"]["num_training_steps"]:
break
# data to device
for k, v in batch.items():
batch[k] = v.to(self.accelerator.device, non_blocking=True)
self.model.train()
# train step
with self.accelerator.accumulate(self.model):
losses = self.train_step(batch)
if self.accelerator.sync_gradients:
self.global_step += 1
# log
if (
self.data_step % self.log_interval == 0
and self.data_step > 0
and self.accelerator.is_main_process
):
self.log(losses)
# eval/vis model output
if (
self.data_step % self.eval_interval == 0
and self.accelerator.is_main_process
and self.train_and_eval
):
self.eval()
# save state
self.accelerator.wait_for_everyone()
if self.data_step % self.save_interval == 0 and self.data_step > 0:
self.accelerator.save_state(os.path.join(self.work_dir, 'checkpoint_epoch{}'.format(self.epoch)))
self.data_step += 1
self.epoch += 1
wandb.finish()
def log(self, losses):
cost_time = time.time() - self.start_time
self.start_time = time.time()
tokens = (
self.config["train"]["train_batch_size"]
* self.log_interval
* self.config["data"]["seq_length"]
)
wandb.log({"Training/Token per second per gpu": tokens / cost_time})
for k, v in losses.items():
wandb.log({"Losses/{}".format(k): v})
current_lr = self.optim.param_groups[0]["lr"]
wandb.log({"Training/LR": current_lr})
if self.optim.scaler is not None:
wandb.log({"Training/Loss Scale": self.optim.scaler.get_scale()})
wandb.log({"Training/Data Step": self.data_step})
wandb.log({"Training/Global Step": self.global_step})
wandb.log({"Training/Epoch": self.epoch})
self.accelerator.print(
"Epoch: {}, Global Step: {}, Data Step: {}, Loss: {}, Token per second per gpu: {}".format(
self.epoch,
self.global_step,
self.data_step,
losses["total_loss"],
tokens / cost_time,
)
)
def eval(self):
text_table = wandb.Table(columns=["question", "pred"])
self.model.eval()
with torch.no_grad():
for data in val_set_pretrain:
raw_inputs = data
inputs = self.tokenizer(
raw_inputs,
return_tensors="pt",
add_special_tokens=False,
return_attention_mask=False,
)
input_length = inputs["input_ids"].shape[1]
for k, v in inputs.items():
inputs[k] = v.to(self.accelerator.device)
self.accelerator.wait_for_everyone()
pred = self.model.generate(
**inputs, max_new_tokens=256, do_sample=True, repetition_penalty=2.0
)
self.accelerator.wait_for_everyone()
pred = pred[0, input_length:]
pred = self.tokenizer.decode(pred.cpu(), skip_special_tokens=True)
text_table.add_data(raw_inputs, pred)
print(raw_inputs, '\n', pred, '\n')
wandb.log({"Predictions on {}".format(self.global_step): text_table})