forked from Prof-Lu-Cewu/Visual-Relationship-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredicate_detection.m
115 lines (88 loc) · 4.23 KB
/
predicate_detection.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
% This file is for Predicting predicate
% Distribution code Version 1.0 -- Copyright 2016, AI lab @ Stanford University.
%
% The Code is created based on the method described in the following paper
% [1] "Visual Relationship Detection with Language Priors",
% Cewu Lu*, Ranjay Krishna*, Michael Bernstein, Li Fei-Fei, European Conference on Computer Vision,
% (ECCV 2016), 2016(oral). (* = indicates equal contribution)
%
% The code and the algorithm are for non-comercial use only.
%% data loading
addpath('evaluation');
load('data/objectListN.mat');
% given a object category index and ouput the name of it.
load('data/obj2vec.mat');
% word-to-vector embeding based on https://github.com/danielfrg/word2vec
% input a word and ouput a vector.
load('data/UnionCNNfeaPredicate.mat')
% the CNN score on union of the boundingboxes of the two participating objects in that relationship.
% we provide our scores (VGG based) here, but you can re-train a new model.
load('data/objectDetRCNN.mat');
% object detection results. The scores are mapped into [0,1].
% we provide detected object (RCCN with VGG) here, but you can use a better model (e.g. ResNet).
% three items:
% detection_labels{k}: object category index in k^{th} testing image.
% detection_bboxes{k}: detected object bounding boxes in k^{th} testing image.
% detection_confs{k}: confident score vector in k^{th} testing image.
load('data/Wb.mat');
% W and b in Eq. (2) in [1]
%% We assume we have ground truth object detection
% we will change "predicate" in rlp_labels_ours use our prediction
load('evaluation/gt.mat');
rlp_labels_ours = gt_tuple_label;
sub_bboxes_ours = gt_sub_bboxes;
obj_bboxes_ours = gt_obj_bboxes;
% gt_tuple_label{j}(k,:) is a tuple that record categroy indexes of <subject, predicate, object>
% gt_sub_bboxes{j}: bounding boxes of subject
% obj_bboxes_ours{j}: bounding boxes of object
%%
testNum = 1000;
fprintf('\n');
fprintf('####### Predicate computing Begins ####### \n');
for ii = 1 : testNum
if mod(ii, 100) == 0
fprintf([num2str(ii), 'th image is tested! \n']);
end
len = size(gt_tuple_label{ii},1);
if len ~= 0
rlp_confs_ours{ii} = zeros(len, 1);
else
rlp_confs_ours{ii} = [];
end
for jj = 1 : len
% language modual
k1 = rlp_labels_ours{ii}(jj,1);
k2 = rlp_labels_ours{ii}(jj,3);
vec_org = [obj2vec(objectListN{k1}),obj2vec(objectListN{k2}),1];
languageModual = [W,B]*vec_org';
% vision modual
visualModual = max(UnionCNNfeaPredicate{ii}(jj,:),1) ;
% score vector over relationship
rlpScore = (languageModual').*visualModual;
[m_score, m_preidcate] = max(rlpScore);
rlp_labels_ours{ii}(jj,2) = m_preidcate;
rlp_confs_ours{ii}(jj) = m_score;
end
end
%% sort by confident score
for ii = 1 : length(rlp_confs_ours)
[Confs, ind] = sort(rlp_confs_ours{ii}, 'descend');
rlp_confs_ours{ii} = Confs;
rlp_labels_ours{ii} = rlp_labels_ours{ii}(ind,:);
sub_bboxes_ours{ii} = sub_bboxes_ours{ii}(ind,:);
obj_bboxes_ours{ii} = obj_bboxes_ours{ii}(ind,:);
end
save('results/predicate_det_result.mat', 'rlp_labels_ours', 'rlp_confs_ours', 'sub_bboxes_ours', 'obj_bboxes_ours');
%% computing Predicate Det. accuracy
fprintf('\n');
fprintf('####### Top recall results ####### \n');
recall100R = top_recall_Relationship(100, rlp_confs_ours, rlp_labels_ours, sub_bboxes_ours, obj_bboxes_ours);
recall50R = top_recall_Relationship(50, rlp_confs_ours, rlp_labels_ours, sub_bboxes_ours, obj_bboxes_ours);
fprintf('Predicate Det. R@100: %0.2f \n', 100*recall100R);
fprintf('Predicate Det. R@50: %0.2f \n', 100*recall50R);
fprintf('\n');
fprintf('####### Zero-shot results ####### \n');
zeroShot100R = zeroShot_top_recall_Relationship(100, rlp_confs_ours, rlp_labels_ours, sub_bboxes_ours, obj_bboxes_ours);
zeroShot50R = zeroShot_top_recall_Relationship(50, rlp_confs_ours, rlp_labels_ours, sub_bboxes_ours, obj_bboxes_ours);
fprintf('zero-shot Predicate Det. R@100: %0.2f \n', 100*zeroShot100R);
fprintf('zero-shot Predicate Det. R@50: %0.2f \n', 100*zeroShot50R);