-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathengine.py
452 lines (406 loc) · 23.5 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
from model import *
import torch
import torch.nn as nn
import torch.optim as optim
import util
import random
class tsformer_trainer:
def __init__(self, args, scaler):
self.args = args
if args.model == 'TSFormer':
self.tsformer_model = TSFormer(args.patch_size, args.in_channel, args.embed_dim, args.num_heads, args.mlp_ratio, args.dropout,
args.num_token, args.mask_ratio, args.encoder_depth, args.decoder_depth, mode='pre-train')
elif args.model == 'DistilFormer':
self.tsformer_model = DistilTSFormer(args.patch_size, args.in_channel, args.embed_dim, args.num_heads, args.mlp_ratio, args.dropout,
args.num_token, args.mask_ratio, args.encoder_depth, args.decoder_depth, mode='pre-train')
self.device = torch.device(args.device)
self.tsformer_model = self.tsformer_model.to(self.device)
self.tsformer_opt = optim.Adam(self.tsformer_model.parameters(), betas=(0.9, 0.95), lr=args.learning_rate, weight_decay=args.weight_decay)
self.scheduler = optim.lr_scheduler.MultiStepLR(self.tsformer_opt, milestones=[50], gamma = 0.5)
self.scaler = scaler
self.clip = 5
def pre_train(self, history_seq):
self.tsformer_model.train()
self.tsformer_opt.zero_grad()
history_seq = history_seq.to(self.device)
if self.args.model == 'TSFormer':
reconstructed, label = self.tsformer_model(history_seq[:,:,:,:self.args.in_channel])
## print('reconstructed', reconstructed.shape)
## print('label', label.shape)
elif self.args.model == 'DistilFormer':
reconstructed, label = self.tsformer_model(history_seq, mask=True)
## print('reconstructed', reconstructed.shape)
## print('label', label.shape)
reconstructed = self.scaler.inverse_transform(reconstructed)
label = self.scaler.inverse_transform(label)
mae_loss = util.masked_mae(reconstructed, label, 0.0)
mae_loss.backward()
if self.clip is not None:
nn.utils.clip_grad_norm_(self.tsformer_model.parameters(), self.clip)
self.tsformer_opt.step()
rmse_loss = util.masked_rmse(reconstructed, label, 0.0)
mape_loss = util.masked_mape(reconstructed, label, 0.0)
return mae_loss.item(), rmse_loss.item(), mape_loss.item()
def eval_pretrain(self, history_seq):
self.tsformer_model.eval()
with torch.no_grad():
history_seq = history_seq.to(self.device)
if self.args.model == 'TSFormer':
reconstructed, label = self.tsformer_model(history_seq[:,:,:,:self.args.in_channel])
elif self.args.model == 'DistilFormer':
reconstructed, label = self.tsformer_model(history_seq, mask=True)
reconstructed = self.scaler.inverse_transform(reconstructed)
label = self.scaler.inverse_transform(label)
mae_loss = util.masked_mae(reconstructed, label, 0.0)
rmse_loss = util.masked_rmse(reconstructed, label, 0.0)
mape_loss = util.masked_mape(reconstructed, label, 0.0)
return mae_loss.item(), rmse_loss.item(), mape_loss.item()
class distil_trainer:
def __init__(self, args, scaler_s, scaler_t):
self.args = args
self.device = torch.device(args.device)
self.teacher_model = TSFormer(patch_size=12,in_channel=1, embed_dim=96, num_heads=4,
mlp_ratio=4, dropout=0.15, num_token=168, mask_ratio=0.75,encoder_depth=4,
decoder_depth=1, mode='forecasting').to(self.device)
try:
self.teacher_model.load_state_dict(torch.load(args.teacher_model_path, map_location=args.device)['model_state_dict'])
except:
self.teacher_model.load_state_dict(torch.load(args.teacher_model_path, map_location=args.device))
print("Loaded teacher model from %s" % args.teacher_model_path)
# we all use num_token 168 to adapt to long sequences (e.g. 7 day target data)
if args.student_model == 'TSFormer':
self.student_model = TSFormer(patch_size=args.patch_size, in_channel=args.in_channel, embed_dim=args.embed_dim,
num_heads=args.num_heads, mlp_ratio=args.mlp_ratio, dropout=args.dropout, num_token=168,
mask_ratio=args.mask_ratio, encoder_depth=args.encoder_depth, decoder_depth=1, mode='forecasting').to(self.device)
elif args.student_model == 'DistilFormer':
self.student_model = DistilTSFormer(patch_size=args.patch_size, in_channel=args.in_channel, embed_dim=args.embed_dim,
num_heads=args.num_heads, mlp_ratio=args.mlp_ratio, dropout=args.dropout, num_token=168,
mask_ratio=args.mask_ratio, encoder_depth=args.encoder_depth, decoder_depth=1, mode='forecasting').to(self.device)
print("student num token", int(args.short_his/args.patch_size))
# self.student_model = DistilTSFormer(patch_size=12,in_channel=1,embed_dim=96,num_heads=4,mlp_ratio=args.mlp_ratio,
# dropout=args.dropout, num_token=args.num_token, mask_ratio=args.mask_ratio, encoder_depth=args.encoder_depth,
# decoder_depth=args.decoder_depth, mode='pre-train').to(self.device)
self.scaler_s = scaler_s
self.scaler_t = scaler_t
self.clip = 5
self.student_optim = optim.Adam(self.student_model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
self.scheduler = optim.lr_scheduler.MultiStepLR(self.student_optim, milestones=[50], gamma = 0.5)
def train_distil(self, source_x, target_x):
# this function does two things:
# first, distillation on both source and target data
self.teacher_model.eval()
self.student_model.train()
self.student_model.mode='forecasting'
with torch.no_grad():
source_teacher = self.teacher_model(source_x[:,:,:,:self.args.in_channel])
target_teacher = self.teacher_model(target_x[:,:,:,:self.args.in_channel])
short_history_len = self.args.short_his
max_position = int((2016-self.args.short_his)//self.args.patch_size)
## print('max_position', max_position)
pos_sample = random.randint(0, max_position)
## print("sampled_position", pos_sample)
start_pos = pos_sample * self.args.patch_size
end_pos = start_pos + self.args.short_his
## print("start_pos, end_pos", start_pos, end_pos)
source_x_short = source_x[:,start_pos:end_pos,:,:]
target_x_short = target_x[:,start_pos:end_pos,:,:]
## print("source_x_short", source_x_short.shape)
## print("target_x_short", target_x_short.shape)
if isinstance(self.student_model, DistilTSFormer):
# print('distilformer')
source_student = self.student_model(source_x_short, mask=False,index=(pos_sample, int(end_pos/self.args.patch_size)))
target_student = self.student_model(target_x_short, mask=False,index=(pos_sample, int(end_pos/self.args.patch_size)))
elif isinstance(self.student_model, TSFormer):
source_student = self.student_model(source_x_short[:,:,:,:self.args.in_channel])
target_student = self.student_model(target_x_short[:,:,:,:self.args.in_channel])
source_teacher = source_teacher[:,:,pos_sample:int(end_pos/self.args.patch_size),:]
target_teacher = target_teacher[:,:,pos_sample:int(end_pos/self.args.patch_size),:]
# print('source_teacher', source_teacher.shape)
# print('target_teacher', target_teacher.shape)
# print('source_student', source_student.shape)
# print('target_student', target_student.shape)
distil_loss_s = (source_student-source_teacher).pow(2).mean()
distil_loss_t = (target_student-target_teacher).pow(2).mean()
# second, masked autoencoding training on target data
self.student_model.mode='pre-train'
if isinstance(self.student_model, DistilTSFormer):
##print('distilformer')
reconstructed, label = self.student_model(target_x_short, mask=True)
elif isinstance(self.student_model, TSFormer):
reconstructed, label = self.student_model(target_x_short[:,:,:,:self.args.in_channel])
reconstructed = self.scaler_t.inverse_transform(reconstructed)
label = self.scaler_t.inverse_transform(label)
mae_loss = util.masked_mae(reconstructed, label, 0.0)
## print('reconstructed', reconstructed.shape)
## print('label', label.shape)
loss = self.args.lambda_d * (distil_loss_s + distil_loss_t) + mae_loss
self.student_optim.zero_grad()
loss.backward()
if self.clip is not None:
nn.utils.clip_grad_norm_(self.student_model.parameters(), self.clip)
self.student_optim.step()
return distil_loss_s.item(), distil_loss_t.item(), mae_loss.item()
def eval_distil(self, target_x):
self.teacher_model.eval()
self.student_model.eval()
self.student_model.mode='forecasting'
with torch.no_grad():
target_teacher = self.teacher_model(target_x[:,:,:,:self.args.in_channel])
short_history_len = self.args.short_his
max_position = int((2016-self.args.short_his)//self.args.patch_size)
pos_sample = random.randint(0, max_position)
start_pos = pos_sample * self.args.patch_size
end_pos = start_pos + self.args.short_his
target_x_short = target_x[:,start_pos:end_pos,:,:]
# print("source_x_short", source_x_short.shape)
# print("target_x_short", target_x_short.shape)
if isinstance(self.student_model, TSFormer):
target_student = self.student_model(target_x_short[:,:,:,:self.args.in_channel])
elif isinstance(self.student_model, DistilTSFormer):
target_student = self.student_model(target_x_short, mask=False,index=(pos_sample, int(end_pos/self.args.patch_size)))
target_teacher = target_teacher[:,:,pos_sample:int(end_pos/self.args.patch_size),:]
distil_loss_t = (target_student-target_teacher).pow(2).mean().item()
# second, masked autoencoding training on target data
self.student_model.mode='pre-train'
if isinstance(self.student_model, DistilTSFormer):
##print('distilformer')
reconstructed, label = self.student_model(target_x_short, mask=True)
elif isinstance(self.student_model, TSFormer):
reconstructed, label = self.student_model(target_x_short[:,:,:,:self.args.in_channel])
reconstructed = self.scaler_t.inverse_transform(reconstructed)
label = self.scaler_t.inverse_transform(label)
# print('reconstructed mean', reconstructed.mean().item())
# print('label mean', label.mean().item())
# print("label min", label.min().item())
mae_loss = util.masked_mae(reconstructed, label, 0.0).item()
rmse_loss = util.masked_rmse(reconstructed, label, 0.0).item()
mape_loss = util.masked_mape(reconstructed, label, 0.0).item()
return distil_loss_t, mae_loss, rmse_loss, mape_loss
class forecast_trainer:
def __init__(self, args, scaler_s, scaler_t, adj_s = None, adj_t = None):
self.args = args
self.device = torch.device(args.device)
self.scaler_s = scaler_s
self.scaler_t = scaler_t
num_node = {"METR-LA":207, "PEMS-BAY":325, "PEMSD7M":228, 'HKTSM':608}
for k in num_node:
if k in args.sdata:
self.source_name = k
num_nodes_s = num_node[k]
if k in args.tdata:
self.target_name = k
num_nodes_t = num_node[k]
# keep everything else the same
self.clip=3
self.degree_reg = args.degree_reg
self.coral_reg = args.coral_reg
self.coral_loss_unit = CORAL_loss()
self.adj_s = adj_s
self.adj_t = adj_t
self.gwnet_model = GraphWaveNet(adj_s, args.dropout, args.adaptadj).to(self.device)
# discrete graph learning v2, tsformer fixed + link predictor trainable
# fix the input seq len here depending on the target data
if args.data_number == 7:
long_his=2016
elif args.data_number == 3:
long_his=864
else:
long_his=args.long_his
self.dglv2 = DiscreteGraphLearningV2(args.device, self.source_name, self.target_name, 10, long_his, args.short_his, args.data_number, args.model).to(self.device)
if args.adaptadj:
self.adp_s = AdaptiveAdjacency(num_nodes_s, 10).to(self.device)
self.adp_t = AdaptiveAdjacency(num_nodes_t, 10).to(self.device)
# dglv2
self.optimizer_s = optim.Adam(list(self.gwnet_model.parameters())+list(self.adp_s.parameters())+list(self.dglv2.parameters()), lr=args.learning_rate, weight_decay=args.weight_decay)
self.optimizer_t = optim.Adam(list(self.gwnet_model.parameters())+list(self.adp_t.parameters())+list(self.dglv2.parameters()), lr=args.learning_rate, weight_decay=args.weight_decay)
else:
# dglv2
self.optimizer_s = optim.Adam(list(self.gwnet_model.parameters())+list(self.dglv2.parameters()), lr=args.learning_rate, weight_decay=args.weight_decay)
self.optimizer_t = optim.Adam(list(self.gwnet_model.parameters())+list(self.dglv2.parameters()), lr=args.learning_rate, weight_decay=args.weight_decay)
self.tsf_type = args.model
if self.tsf_type == 'TSFormer':
self.tsformer = TSFormer(args.patch_size, args.in_channel, args.embed_dim, args.num_heads, args.mlp_ratio, args.dropout,
args.num_token, args.mask_ratio, args.encoder_depth, args.decoder_depth, mode='forecasting').to(self.device)
elif self.tsf_type == 'DistilFormer':
# print(long_his/12)
self.tsformer = DistilTSFormer(args.patch_size, args.in_channel, args.embed_dim, args.num_heads, args.mlp_ratio, args.dropout,
int(long_his/12), args.mask_ratio, args.encoder_depth, args.decoder_depth, mode='forecasting').to(self.device)
sd = torch.load(args.tsformer_path, map_location=self.device)
self.tsformer.load_state_dict(sd)
for param in self.tsformer.parameters():
param.requires_grad=False
# print("tsformer in train?", self.tsformer.training) True
self.tsformer.eval()
print("Loading state dict from %s success" % args.tsformer_path)
# reconstructors
self.reconstructors = nn.ModuleList()
for i in range(7):
reconstructor = FCReconstructor(32, 32, 32).to(self.device)
self.reconstructors.append(reconstructor)
self.recons_opt = torch.optim.Adam(self.reconstructors.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
def source_train(self, xs, ys, long_xs, xt=None, yt=None):
# dglv2
self.dglv2.train()
self.gwnet_model.train()
self.optimizer_s.zero_grad()
xs = xs.to(self.device)
ys = ys.to(self.device)
long_xs = long_xs.to(self.device)
# dglv2
bernoulli_unnorm, hidden_states, adj_knn, sampled_adj = self.dglv2(long_xs, tsformer=self.tsformer, compute_hidden=False, domain='s')
if self.args.adaptadj:
adp = self.adp_s()
out, tonly_s, st_s = self.gwnet_model(xs[:,:,:,:2], adp=adp, sampled_adj=sampled_adj,return_st=True)
else:
out, tonly_s, st_s = self.gwnet_model(xs[:,:,:,:2], adp=None, sampled_adj=sampled_adj, return_st=True)
if xt is not None and yt is not None:
xt = xt.to(self.device)
yt = yt.to(self.device)
_, _, _, sampled_adj_t = self.dglv2(xt, tsformer = self.tsformer, compute_hidden=False, domain='t')
if self.args.adaptadj:
adp_t = self.adp_t()
_, tonly_t, st_t = self.gwnet_model(xt[:,:,:,:2], adp=adp_t, sampled_adj=sampled_adj_t,return_st=True)
else:
_, tonly_t, st_t = self.gwnet_model(xt[:,:,:,:2], adp=None, sampled_adj=sampled_adj_t,return_st=True)
ys = ys[:,:,:,0].transpose(-2,-1)
out = self.scaler_s.inverse_transform(out)
ys = self.scaler_s.inverse_transform(ys)
mae_loss = util.masked_mae(out, ys, 0.0)
degree_loss = sampled_adj.mean().pow(2)
coral_loss = 0
# apply coral on st features
"""
for st_s_, st_t_ in zip(st_s, st_t):
num_feat = st_s_.shape[1]
s_idx = torch.randint(0, st_s_.shape[2], size=(16,), device=self.device)
t_idx = torch.randint(0, st_t_.shape[2], size=(16,), device=self.device)
sampled_st_s_ = st_s_[:,:,s_idx, -1].transpose(1, 2).reshape(-1, num_feat)
sampled_st_t_ = st_t_[:,:,t_idx, -1].transpose(1, 2).reshape(-1, num_feat)
coral_loss += self.coral_loss_unit(sampled_st_s_, sampled_st_t_)
"""
# apply coral on st-t features
"""
for st_s_, st_t_, t_s_, t_t_ in zip(st_s, st_t, tonly_s, tonly_t):
num_feat = st_s_.shape[1]
s_idx = torch.randint(0, st_s_.shape[2], size=(16,), device=self.device)
t_idx = torch.randint(0, st_t_.shape[2], size=(16,), device=self.device)
sampled_st_s_ = (st_s_ - t_s_)[:,:,s_idx, -1].transpose(1, 2).reshape(-1, num_feat)
sampled_st_t_ = (st_t_ - t_t_)[:,:,t_idx, -1].transpose(1, 2).reshape(-1, num_feat)
coral_loss += self.coral_loss_unit(sampled_st_s_, sampled_st_t_)
"""
# apply coral on st - reconstructed st feature
for st_s_, st_t_, t_s_, t_t_, recons in zip(st_s, st_t, tonly_s, tonly_t, self.reconstructors):
num_feat = st_s_.shape[1]
s_idx = torch.randint(0, st_s_.shape[2], size=(16,), device=self.device)
t_idx = torch.randint(0, st_t_.shape[2], size=(16,), device=self.device)
sampled_st_s_ = (st_s_ - recons(t_s_))[:,:,s_idx,-1].transpose(1, 2).reshape(-1, num_feat)
sampled_st_t_ = (st_t_ - recons(t_t_))[:,:,t_idx,-1].transpose(1, 2).reshape(-1, num_feat)
coral_loss += self.coral_loss_unit(sampled_st_s_, sampled_st_t_)
# for st_s_, st_t_ in zip(st_s, st_t):
# print("st_s_", st_s_.shape) # 64, 32, num_node, seq_len
# print("st_t_", st_t_.shape)
# for t_s_, t_t_ in zip(tonly_s, tonly_t):
# print("t_s_", t_s_.shape) # 64, 32, num_node, seq_len, same as st_s, st_s
# print("t_t_", t_t_.shape)
loss = mae_loss + degree_loss * self.degree_reg + coral_loss * self.coral_reg
loss.backward()
if self.clip is not None:
nn.utils.clip_grad_norm_(list(self.gwnet_model.parameters())+list(self.dglv2.parameters()), self.clip)
self.optimizer_s.step()
rmse = util.masked_rmse(out, ys, 0.0)
mape = util.masked_mape(out, ys, 0.0)
# print(out.shape)
# train reconstructor
recons_losses = []
for st_s_, st_t_, t_s_, t_t_, recons in zip(st_s, st_t, tonly_s, tonly_t, self.reconstructors):
st_s_ = st_s_.detach()
st_t_ = st_t_.detach()
t_s_ = t_s_.detach()
t_t_ = t_t_.detach()
st_s_recons = recons(t_s_)
st_t_recons = recons(t_t_)
recons_losses.append((st_s_recons - st_s_).pow(2).mean())
recons_losses.append((st_t_recons - st_t_).pow(2).mean())
recons_loss = sum(recons_losses)
self.recons_opt.zero_grad()
recons_loss.backward()
self.recons_opt.step()
return mae_loss.item(), rmse.item(), mape.item(), degree_loss.item(), coral_loss.item(), recons_loss.item()
def source_eval(self, xs, ys, long_xs, return_val = False):
# dglv2
self.dglv2.eval()
self.gwnet_model.eval()
with torch.no_grad():
xs = xs.to(self.device)
ys = ys.to(self.device)
long_xs = long_xs.to(self.device)
# dglv2
bernoulli_unnorm, hidden_states, adj_knn, sampled_adj = self.dglv2(long_xs, tsformer=self.tsformer, compute_hidden=False, domain='s')
if self.args.adaptadj:
adp = self.adp_s()
out = self.gwnet_model(xs[:,:,:,:2], adp=adp, sampled_adj=sampled_adj)
else:
out = self.gwnet_model(xs[:,:,:,:2], adp=None, sampled_adj=sampled_adj)
ys = ys[:,:,:,0].transpose(-2,-1)
out = self.scaler_s.inverse_transform(out)
ys = self.scaler_s.inverse_transform(ys)
loss = util.masked_mae(out, ys, 0.0)
rmse = util.masked_rmse(out, ys, 0.0)
mape = util.masked_mape(out, ys, 0.0)
if return_val:
return out, ys
else:
return loss.item(), rmse.item(), mape.item()
def fine_tune(self, xt, yt, long_xt, use_long=False):
# dglv2
self.dglv2.train()
self.gwnet_model.train()
self.optimizer_t.zero_grad()
xt = xt.to(self.device)
yt = yt.to(self.device)
long_xt = long_xt.to(self.device)
# print('long_xt', long_xt.shape)
# dglv2
bernoulli_unnorm, hidden_states, adj_knn, sampled_adj = self.dglv2(long_xt, tsformer=self.tsformer, compute_hidden=True, domain='t')
if self.args.adaptadj:
adp = self.adp_t()
out = self.gwnet_model(xt[:,:,:,:2], adp=adp, sampled_adj=sampled_adj, hidden_states=hidden_states[:,:,-1,:]) ## (batch_size, num_node, 12)
else:
out = self.gwnet_model(xt[:,:,:,:2], adp=None, sampled_adj=sampled_adj, hidden_states=hidden_states[:,:,-1,:])
yt = yt[:,:,:,0].transpose(-2,-1)
out = self.scaler_t.inverse_transform(out)
yt = self.scaler_t.inverse_transform(yt)
mae_loss = util.masked_mae(out, yt, 0.0)
degree_loss = sampled_adj.mean().pow(2)
loss = mae_loss + degree_loss * self.degree_reg
loss.backward()
if self.clip is not None:
nn.utils.clip_grad_norm_(list(self.gwnet_model.parameters())+list(self.dglv2.parameters()), self.clip)
self.optimizer_t.step()
rmse = util.masked_rmse(out, yt, 0.0)
mape = util.masked_mape(out, yt, 0.0)
# print(out.shape)
return mae_loss.item(), rmse.item(), mape.item(), degree_loss.item()
def target_eval(self, xt, yt, long_xt=None, return_val=False, use_long=False):
self.dglv2.eval()
self.gwnet_model.eval()
with torch.no_grad():
xt = xt.to(self.device)
yt = yt.to(self.device)
long_xt = long_xt.to(self.device)
bernoulli_unnorm, hidden_states, adj_knn, sampled_adj = self.dglv2(long_xt, tsformer=self.tsformer, compute_hidden=True, domain='t')
if self.args.adaptadj:
adp = self.adp_t()
out = self.gwnet_model(xt[:,:,:,:2], adp=adp, sampled_adj=sampled_adj,hidden_states=hidden_states[:,:,-1,:]) ## (batch_size, num_node, 12)
else:
out = self.gwnet_model(xt[:,:,:,:2], adp=None, sampled_adj=sampled_adj,hidden_states=hidden_states[:,:,-1,:])
yt = yt[:,:,:,0].transpose(-2,-1)
out = self.scaler_t.inverse_transform(out)
yt = self.scaler_t.inverse_transform(yt)
loss = util.masked_mae(out, yt, 0.0)
rmse = util.masked_rmse(out, yt, 0.0)
mape = util.masked_mape(out, yt, 0.0)
if return_val:
return out, yt
else:
return loss.item(), rmse.item(), mape.item()