-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathface_recognition.py
96 lines (72 loc) · 2.93 KB
/
face_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import cv2
import numpy as np
import os
import time
from datetime import datetime
from spreadsheetsFR import detectPatient
def livestream(names,status,l):
c=1
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('trainer/trainer.yml') #load trained model
cascadePath = "trainer/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath);
font = cv2.FONT_HERSHEY_SIMPLEX
#initiate id counter, the number of persons you want to include
id = 1
time=['']
date=['']
for x in range(0,l):
time.append('1')
date.append('1')
# Initialize and start realtime video capture
cam = cv2.VideoCapture(0)
cam.set(3, 640) # set video widht
cam.set(4, 480) # set video height
# Define min window size to be recognized as a face
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)
set = {-1,0}
while True:
ret, img =cam.read()
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor = 1.2,
minNeighbors = 5,
minSize = (int(minW), int(minH)),
)
for(x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (0,0,255), 2)
id, confidence = recognizer.predict(gray[y:y+h,x:x+w])
# Check if confidence is less them 100 ==> "0" is perfect match
if (confidence < 100):
pid = id
set.update([pid])
now = datetime.now()
date[id] = now.strftime("%d/%m/%Y")
time[id] = now.strftime("%H:%M:%S")
confidence = " {0}%".format(round(100 - confidence))
if(str(status[id]=='Positive')):
cv2.putText(img, str(status[id]), (x+5,y-30), font, 1, (0,0,255), 2)
cv2.putText(img, str(names[id]), (x+5,y-5), font, 1, (255,255,255), 2)
cv2.putText(img, str(confidence), (x+5,y+h-5), font, 1, (255,255,0), 1)
elif(str(status[id]=='At risk')):
cv2.putText(img, str(status[id]), (x+5,y-30), font, 1, (0,0,255), 2)
cv2.putText(img, str(names[id]), (x+5,y-5), font, 1, (255,255,255), 2)
cv2.putText(img, str(confidence), (x+5,y+h-5), font, 1, (255,255,0), 1)
else:
id1 = "Unknown"
confidence = " {0}%".format(round(100 - confidence))
cv2.putText(img, id1, (x+5,y-5), font, 1, (255,255,255), 2)
cv2.imshow('COVID Patient Tracking Live Feed',img)
k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
set.remove(0)
set.remove(-1)
for pid in set:
detectPatient(pid,names[pid],date[pid],time[pid],status[pid])
# Do a bit of cleanup
print("\n [INFO] Exiting Program and cleanup stuff")
cam.release()
cv2.destroyAllWindows()