forked from TruongKhang/cds-mvsnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgipuma.py
executable file
·221 lines (172 loc) · 7.86 KB
/
gipuma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os, sys, shutil, gc
from utils import *
from datasets.data_io import read_pfm, save_pfm
from struct import *
import numpy as np
# read intrinsics and extrinsics
def read_camera_parameters(filename):
with open(filename) as f:
lines = f.readlines()
lines = [line.rstrip() for line in lines]
# extrinsics: line [1,5), 4x4 matrix
extrinsics = np.fromstring(' '.join(lines[1:5]), dtype=np.float32, sep=' ').reshape((4, 4))
# intrinsics: line [7-10), 3x3 matrix
intrinsics = np.fromstring(' '.join(lines[7:10]), dtype=np.float32, sep=' ').reshape((3, 3))
# TODO: assume the feature is 1/4 of the original image size
# intrinsics[:2, :] /= 4
return intrinsics, extrinsics
def read_gipuma_dmb(path):
'''read Gipuma .dmb format image'''
with open(path, "rb") as fid:
image_type = unpack('<i', fid.read(4))[0]
height = unpack('<i', fid.read(4))[0]
width = unpack('<i', fid.read(4))[0]
channel = unpack('<i', fid.read(4))[0]
array = np.fromfile(fid, np.float32)
array = array.reshape((width, height, channel), order="F")
return np.transpose(array, (1, 0, 2)).squeeze()
def write_gipuma_dmb(path, image):
'''write Gipuma .dmb format image'''
image_shape = np.shape(image)
width = image_shape[1]
height = image_shape[0]
if len(image_shape) == 3:
channels = image_shape[2]
else:
channels = 1
if len(image_shape) == 3:
image = np.transpose(image, (2, 0, 1)).squeeze()
with open(path, "wb") as fid:
# fid.write(pack(1))
fid.write(pack('<i', 1))
fid.write(pack('<i', height))
fid.write(pack('<i', width))
fid.write(pack('<i', channels))
image.tofile(fid)
return
def mvsnet_to_gipuma_dmb(in_path, out_path):
'''convert mvsnet .pfm output to Gipuma .dmb format'''
image, _ = read_pfm(in_path)
write_gipuma_dmb(out_path, image)
return
def mvsnet_to_gipuma_cam(in_path, out_path):
'''convert mvsnet camera to gipuma camera format'''
intrinsic, extrinsic = read_camera_parameters(in_path)
intrinsic_new = np.zeros((4, 4))
intrinsic_new[:3, :3] = intrinsic
intrinsic = intrinsic_new
projection_matrix = np.matmul(intrinsic, extrinsic)
projection_matrix = projection_matrix[0:3][:]
f = open(out_path, "w")
for i in range(0, 3):
for j in range(0, 4):
f.write(str(projection_matrix[i][j]) + ' ')
f.write('\n')
f.write('\n')
f.close()
return
def fake_gipuma_normal(in_depth_path, out_normal_path):
depth_image = read_gipuma_dmb(in_depth_path)
image_shape = np.shape(depth_image)
normal_image = np.ones_like(depth_image)
normal_image = np.reshape(normal_image, (image_shape[0], image_shape[1], 1))
normal_image = np.tile(normal_image, [1, 1, 3])
normal_image = normal_image / 1.732050808
mask_image = np.squeeze(np.where(depth_image > 0, 1, 0))
mask_image = np.reshape(mask_image, (image_shape[0], image_shape[1], 1))
mask_image = np.tile(mask_image, [1, 1, 3])
mask_image = np.float32(mask_image)
normal_image = np.multiply(normal_image, mask_image)
normal_image = np.float32(normal_image)
write_gipuma_dmb(out_normal_path, normal_image)
return
def mvsnet_to_gipuma(dense_folder, gipuma_point_folder):
image_folder = os.path.join(dense_folder, 'images')
cam_folder = os.path.join(dense_folder, 'cams')
gipuma_cam_folder = os.path.join(gipuma_point_folder, 'cams')
gipuma_image_folder = os.path.join(gipuma_point_folder, 'images')
if not os.path.isdir(gipuma_point_folder):
os.mkdir(gipuma_point_folder)
if not os.path.isdir(gipuma_cam_folder):
os.mkdir(gipuma_cam_folder)
if not os.path.isdir(gipuma_image_folder):
os.mkdir(gipuma_image_folder)
# convert cameras
image_names = os.listdir(image_folder)
for image_name in image_names:
image_prefix = os.path.splitext(image_name)[0]
in_cam_file = os.path.join(cam_folder, image_prefix + '_cam.txt')
out_cam_file = os.path.join(gipuma_cam_folder, image_name + '.P')
mvsnet_to_gipuma_cam(in_cam_file, out_cam_file)
# copy images to gipuma image folder
image_names = os.listdir(image_folder)
for image_name in image_names:
in_image_file = os.path.join(image_folder, image_name)
out_image_file = os.path.join(gipuma_image_folder, image_name)
shutil.copy(in_image_file, out_image_file)
# convert depth maps and fake normal maps
gipuma_prefix = '2333__'
for image_name in image_names:
image_prefix = os.path.splitext(image_name)[0]
sub_depth_folder = os.path.join(gipuma_point_folder, gipuma_prefix + image_prefix)
if not os.path.isdir(sub_depth_folder):
os.mkdir(sub_depth_folder)
in_depth_pfm = os.path.join(dense_folder, "depth_est", image_prefix + '_prob_filtered.pfm')
out_depth_dmb = os.path.join(sub_depth_folder, 'disp.dmb')
fake_normal_dmb = os.path.join(sub_depth_folder, 'normals.dmb')
mvsnet_to_gipuma_dmb(in_depth_pfm, out_depth_dmb)
fake_gipuma_normal(out_depth_dmb, fake_normal_dmb)
def probability_filter(dense_folder, prob_threshold):
image_folder = os.path.join(dense_folder, 'images')
# convert cameras
image_names = os.listdir(image_folder)
for image_name in image_names:
image_prefix = os.path.splitext(image_name)[0]
init_depth_map_path = os.path.join(dense_folder, "depth_est", image_prefix + '.pfm')
prob_map_path = os.path.join(dense_folder, "confidence", image_prefix + '.pfm')
out_depth_map_path = os.path.join(dense_folder, "depth_est", image_prefix + '_prob_filtered.pfm')
depth_map, _ = read_pfm(init_depth_map_path)
prob_map, _ = read_pfm(prob_map_path)
mask = None
for i, p in enumerate(prob_threshold):
if mask is None:
mask = (prob_map[:, :, i] > p)
else:
mask = mask & (prob_map[:, :, i] > p)
#depth_map[prob_map < prob_threshold] = 0
depth_map[~mask] = 0
save_pfm(out_depth_map_path, depth_map)
def depth_map_fusion(point_folder, fusibile_exe_path, disp_thresh, num_consistent):
cam_folder = os.path.join(point_folder, 'cams')
image_folder = os.path.join(point_folder, 'images')
depth_min = 0.001
depth_max = 100000
normal_thresh = 360
cmd = fusibile_exe_path
cmd = cmd + ' -input_folder ' + point_folder + '/'
cmd = cmd + ' -p_folder ' + cam_folder + '/'
cmd = cmd + ' -images_folder ' + image_folder + '/'
cmd = cmd + ' --depth_min=' + str(depth_min)
cmd = cmd + ' --depth_max=' + str(depth_max)
cmd = cmd + ' --normal_thresh=' + str(normal_thresh)
cmd = cmd + ' --disp_thresh=' + str(disp_thresh)
cmd = cmd + ' --num_consistent=' + str(num_consistent)
print(cmd)
os.system(cmd)
return
def gipuma_filter(testlist, outdir, prob_threshold, disp_threshold, num_consistent, fusibile_exe_path):
for scan in testlist:
out_folder = os.path.join(outdir, scan)
dense_folder = out_folder
point_folder = os.path.join(dense_folder, 'points_mvsnet')
if not os.path.isdir(point_folder):
os.mkdir(point_folder)
# probability filter
print('filter depth map with probability map')
probability_filter(dense_folder, prob_threshold)
# convert to gipuma format
print('Convert mvsnet output to gipuma input')
mvsnet_to_gipuma(dense_folder, point_folder)
# depth map fusion with gipuma
print('Run depth map fusion & filter')
depth_map_fusion(point_folder, fusibile_exe_path, disp_threshold, num_consistent)