-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
139 lines (110 loc) · 6.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import math
from sklearn import neighbors
import os
import os.path
import pickle
from PIL import Image, ImageDraw
import face_recognition
from face_recognition.face_recognition_cli import image_files_in_folder
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
def train(train_dir, model_save_path=None, n_neighbors=None, knn_algo='ball_tree', verbose=False):
"""
Trains a k-nearest neighbors classifier for face recognition.
:param train_dir: directory that contains a sub-directory for each known person, with its name.
(View in source code to see train_dir example tree structure)
Structure:
<train_dir>/
├── <person1>/
│ ├── <somename1>.jpeg
│ ├── <somename2>.jpeg
│ ├── ...
├── <person2>/
│ ├── <somename1>.jpeg
│ └── <somename2>.jpeg
└── ...
:param model_save_path: (optional) path to save model on disk
:param n_neighbors: (optional) number of neighbors to weigh in classification. Chosen automatically if not specified
:param knn_algo: (optional) underlying data structure to support knn.default is ball_tree
:param verbose: verbosity of training
:return: returns knn classifier that was trained on the given data.
"""
X = []
y = []
# Loop through each person in the training set
for class_dir in os.listdir(train_dir):
if not os.path.isdir(os.path.join(train_dir, class_dir)):
continue
# Loop through each training image for the current person
for img_path in image_files_in_folder(os.path.join(train_dir, class_dir)):
image = face_recognition.load_image_file(img_path)
face_bounding_boxes = face_recognition.face_locations(image)
if len(face_bounding_boxes) != 1:
# If there are no people (or too many people) in a training image, skip the image.
if verbose:
print("Image {} not suitable for training: {}".format(img_path, "Didn't find a face" if len(face_bounding_boxes) < 1 else "Found more than one face"))
else:
# Add face encoding for current image to the training set
X.append(face_recognition.face_encodings(image, known_face_locations=face_bounding_boxes, num_jitters=10, model="large")[0])
y.append(class_dir)
# Determine how many neighbors to use for weighting in the KNN classifier
if n_neighbors is None:
n_neighbors = int(round(math.sqrt(len(X))))
if verbose:
print("Chose n_neighbors automatically:", n_neighbors)
# Create and train the KNN classifier
knn_clf = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, algorithm=knn_algo, weights='distance')
knn_clf.fit(X, y)
# Save the trained KNN classifier
if model_save_path is not None:
with open(model_save_path, 'wb') as f:
pickle.dump(knn_clf, f)
return knn_clf
def predict(X_img_path, knn_clf=None, model_path=None, distance_threshold=0.5):
"""
Recognizes faces in given image using a trained KNN classifier
:param X_img_path: path to image to be recognized
:param knn_clf: (optional) a knn classifier object. if not specified, model_save_path must be specified.
:param model_path: (optional) path to a pickled knn classifier. if not specified, model_save_path must be knn_clf.
:param distance_threshold: (optional) distance threshold for face classification. the larger it is, the more chance
of mis-classifying an unknown person as a known one.
:return: a list of names and face locations for the recognized faces in the image: [(name, bounding box), ...].
For faces of unrecognized persons, the name 'unknown' will be returned.
"""
if not os.path.isfile(X_img_path) or os.path.splitext(X_img_path)[1][1:] not in ALLOWED_EXTENSIONS:
raise Exception("Invalid image path: {}".format(X_img_path))
if knn_clf is None and model_path is None:
raise Exception("Must supply knn classifier either thourgh knn_clf or model_path")
# Load a trained KNN model (if one was passed in)
if knn_clf is None:
with open(model_path, 'rb') as f:
knn_clf = pickle.load(f)
# Load image file and find face locations
X_img = face_recognition.load_image_file(X_img_path)
X_face_locations = face_recognition.face_locations(X_img)
# If no faces are found in the image, return an empty result.
if len(X_face_locations) == 0:
return []
# Find encodings for faces in the test iamge
faces_encodings = face_recognition.face_encodings(X_img, known_face_locations=X_face_locations, model="large")
# Use the KNN model to find the best matches for the test face
closest_distances = knn_clf.kneighbors(faces_encodings, n_neighbors=1)
are_matches = [closest_distances[0][i][0] <= distance_threshold for i in range(len(X_face_locations))]
# Predict classes and remove classifications that aren't within the threshold
return [(pred, loc) if rec else ("unknown", loc) for pred, loc, rec in zip(knn_clf.predict(faces_encodings), X_face_locations, are_matches)]
if __name__ == "__main__":
# STEP 1: Train the KNN classifier and save it to disk
# Once the model is trained and saved, you can skip this step next time.
print("Training KNN classifier...")
classifier = train("data/train", model_save_path="trained_knn_model.clf", n_neighbors=2)
print("Training complete!")
print("Let's verify the mode:")
# STEP 2: Using the trained classifier, make predictions for unknown images
for image_file in os.listdir("data/test"):
full_file_path = os.path.join("data/test", image_file)
print("Looking for faces in {}".format(image_file))
# Find all people in the image using a trained classifier model
# Note: You can pass in either a classifier file name or a classifier model instance
predictions = predict(full_file_path, model_path="trained_knn_model.clf")
# Print results on the console
for name, (top, right, bottom, left) in predictions:
print("- Found {} at ({}, {})".format(name, left, top))