-
Notifications
You must be signed in to change notification settings - Fork 15
/
test.py
89 lines (75 loc) · 3.01 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
###
# Author: Kai Li
# Date: 2024-01-22 01:16:22
# Email: [email protected]
# LastEditTime: 2024-01-24 00:05:10
###
import torch
import torchaudio
import json
from typing import Any, Dict, List, Optional, Tuple
import os
from omegaconf import OmegaConf
import argparse
import pytorch_lightning as pl
import hydra
from pytorch_lightning.strategies.ddp import DDPStrategy
from pytorch_lightning import Callback, LightningDataModule, LightningModule, Trainer
# from pytorch_lightning.loggers import Logger
from omegaconf import DictConfig
import look2hear.system
import look2hear.datas
import look2hear.losses
import look2hear.models
from look2hear.metrics import MetricsTracker
from look2hear.utils import RankedLogger, instantiate, print_only
import warnings
warnings.filterwarnings("ignore")
class Owndata():
def __init__(self, root):
self.root = root
self.data_lists = []
for root, dirs, files in os.walk(self.root):
for file in files:
if file == "codec_wav.wav":
self.data_lists.append(os.path.join(root, file))
def __len__(self):
return len(self.data_lists)
def __getitem__(self, idx):
ori = self.data_lists[idx].replace("codec_wav.wav", "ori_wav.wav")
ori_audio = torchaudio.load(ori)[0]
codec_audio = torchaudio.load(self.data_lists[idx])[0]
return ori_audio, codec_audio, ori
def test(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
data_val = Owndata("./codec-test")
cfg.model.pop("_target_", None)
model = look2hear.models.GullFullband.from_pretrain(os.path.join(cfg.exp.dir, cfg.exp.name, "best_model.pth"), **cfg.model).cuda()
model.cuda()
os.makedirs(os.path.join(cfg.exp.dir, cfg.exp.name, "results/"), exist_ok=True)
metrics = MetricsTracker(save_file=os.path.join(cfg.exp.dir, cfg.exp.name, "results/")+"metrics.csv")
length = len(data_val)
for idx in range(len(data_val)):
ori_wav, codec_wav, key = data_val[idx]
ori_wav = ori_wav.cuda()
codec_wav = codec_wav.unsqueeze(0).cuda()
with torch.no_grad():
ests = model(codec_wav)
torchaudio.save(key.replace("ori_wav.wav", "ests_wav.wav"), ests.squeeze(0).cpu(), 44100)
metrics(ori_wav, ests, key)
if idx % 10 == 0:
dicts = metrics.update()
print(f"Processed {idx}/{length} samples: SDR: {dicts['sdr']}, SI-SNR: {dicts['si-snr']}, VISQOL: {dicts['visqol']}")
metrics.final()
print("Finished testing")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--conf_dir",
default="Exps/Apollo/config.yaml",
help="Full path to save best validation model",
)
args = parser.parse_args()
cfg = OmegaConf.load(args.conf_dir)
os.makedirs(os.path.join(cfg.exp.dir, cfg.exp.name), exist_ok=True)
OmegaConf.save(cfg, os.path.join(cfg.exp.dir, cfg.exp.name, "config.yaml"))
test(cfg)