-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathall.py
392 lines (305 loc) · 14.6 KB
/
all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_absolute_percentage_error
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import OrdinalEncoder, StandardScaler
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import math as math
df = pd.read_csv("data/resale-flat-prices-sers-removed.csv", low_memory=False)
# %%
# Combine Multi-Generation and Multi Generation categories in flat type
df["flat_type"] = df["flat_type"].replace(
"MULTI GENERATION", "MULTI-GENERATION")
df["flat_type"].unique()
# %%
# Clean flat model column by capitalising and renaming
df["flat_model"] = df["flat_model"].replace("2-room", "2-ROOM")
df["flat_model"] = df["flat_model"].replace("2-ROOM", "2 ROOM")
df["flat_model"] = df["flat_model"].replace("3Gen", "3 GEN")
df["flat_model"] = df["flat_model"].replace("Adjoined flat", "ADJOINED FLAT")
df["flat_model"] = df["flat_model"].replace("Apartment", "APARTMENT")
df["flat_model"] = df["flat_model"].replace("Improved", "IMPROVED")
df["flat_model"] = df["flat_model"].replace(
"Improved-Maisonette", "IMPROVED-MAISONETTE")
df["flat_model"] = df["flat_model"].replace(
"IMPROVED-MAISONETTE", "IMPROVED MAISONETTE")
df["flat_model"] = df["flat_model"].replace("Maisonette", "MAISONETTE")
df["flat_model"] = df["flat_model"].replace("Model A", "MODEL A")
df["flat_model"] = df["flat_model"].replace(
"Model A-Maisonette", "MODEL A-MAISONETTE")
df["flat_model"] = df["flat_model"].replace(
"MODEL A-MAISONETTE", "MODEL A MAISONETTE")
df["flat_model"] = df["flat_model"].replace("New Generation", "NEW GENERATION")
df["flat_model"] = df["flat_model"].replace("Model A2", "MODEL A2")
df["flat_model"] = df["flat_model"].replace(
"MULTI GENERATION", "MULTI-GENERATION")
df["flat_model"] = df["flat_model"].replace(
"Multi Generation", "MULTI-GENERATION")
df["flat_model"] = df["flat_model"].replace(
"Premium Apartment", "PREMIUM APARTMENT")
df["flat_model"] = df["flat_model"].replace(
"Premium Apartment Loft", "PREMIUM APARTMENT LOFT")
df["flat_model"] = df["flat_model"].replace(
"Premium Maisonette", "PREMIUM MAISONETTE")
df["flat_model"] = df["flat_model"].replace("Simplified", "SIMPLIFIED")
df["flat_model"] = df["flat_model"].replace("Standard", "STANDARD")
df["flat_model"] = df["flat_model"].replace("Terrace", "TERRACE")
df["flat_model"] = df["flat_model"].replace("Type S1", "TYPE S1")
df["flat_model"] = df["flat_model"].replace("Type S2", "TYPE S2")
df["flat_model"].unique()
# Convert lease_commence_date to remaining lease at point of transaction
# lease commencing 1976 and sale in 1990 = 1976+99-1990 = 85 years remaining
df["remaining_lease"] = (df["lease_commence_date"] +
99 - df["month"].str[:4].astype(int))/99
df = df.drop(columns=['lease_commence_date'])
# Calculate inflated_adjusted_price
hdb_resale_price_index = pd.read_csv(
"data/housing-and-development-board-resale-price-index-1q2009-100-monthly.csv", low_memory=False, index_col=0)
current_index = hdb_resale_price_index.tail(1)["index"].values[0]
# join with hdb_resale_price_index
df = df.join(hdb_resale_price_index, on="month", how="left", rsuffix="_index")
df["adjusted_price"] = df["resale_price"] * (current_index / df["index"])
df.drop(columns=["index", "resale_price", "month"], inplace=True)
# Add Region Data
# Central = ['BISHAN', 'BUKIT MERAH', 'BUKIT TIMAH', 'CENTRAL AREA', 'GEYLANG', 'KALLANG/WHAMPOA', 'MARINE PARADE', 'QUEENSTOWN', 'TOA PAYOH']
# East = ['BEDOK','PASIR RIS', 'TAMPINES']
# West = ['BUKIT BATOK', 'BUKIT PANJANG', 'CHOA CHU KANG', 'CLEMENTI', 'JURONG EAST', 'JURONG WEST']
# North East = ['ANG MO KIO','HOUGANG', 'PUNGGOL', 'SENGKANG','SERANGOON']
# North = ['SEMBAWANG', 'WOODLANDS', 'YISHUN',]
def get_region(row):
town = row["town"]
if town in ['BISHAN', 'BUKIT MERAH', 'BUKIT TIMAH', 'CENTRAL AREA', 'GEYLANG', 'KALLANG/WHAMPOA', 'MARINE PARADE', 'QUEENSTOWN', 'TOA PAYOH']:
return "CENTRAL"
elif town in ['BEDOK', 'PASIR RIS', 'TAMPINES']:
return "EAST"
elif town in ['BUKIT BATOK', 'BUKIT PANJANG', 'CHOA CHU KANG', 'CLEMENTI', 'JURONG EAST', 'JURONG WEST']:
return "WEST"
elif town in ['ANG MO KIO', 'HOUGANG', 'PUNGGOL', 'SENGKANG', 'SERANGOON']:
return "NORTH-EAST"
elif town in ['SEMBAWANG', 'WOODLANDS', 'YISHUN']:
return "NORTH"
df["region"] = df.apply(get_region, axis=1)
# Add coordinate data from block_street_name_coords.json
df["block_street_name"] = df["block"].astype(
str) + " " + df["street_name"].astype(str)
df = df.drop(columns=['block', 'street_name'])
block_street_name_coords = pd.read_json("data/block_street_name_coords.json")
block_street_name_coords = block_street_name_coords.transpose()
df = df.join(block_street_name_coords, on="block_street_name",
how="left", rsuffix="_coords")
df.drop(columns=["block_street_name"], inplace=True)
# Add distance from Downtown Core planning area (CBD)
# Downtown Core planning area (CBD) = 1.286667, 103.853611
dg_mrt_lat = np.radians(1.286667)
dg_mrt_long = np.radians(103.853611)
df['distance_from_cbd'] = 6367 * 2 * np.arcsin(np.sqrt(np.sin((np.radians(df['latitude']) - dg_mrt_lat)/2)**2 + math.cos(
math.radians(37.2175900)) * np.cos(np.radians(df['latitude'])) * np.sin((np.radians(df['longitude']) - dg_mrt_long)/2)**2))
# Transform storey_range to median of range (e.g. 01 TO 03 = 2)
def convert_to_median(row):
storey_range = row["storey_range"].split(" TO ")
median = (int(storey_range[0]) + int(storey_range[1])) / 2
return median
df["median_storey"] = df.apply(convert_to_median, axis=1)
df = df.drop(columns=['storey_range'])
# Transform flat_type to ordinal encoding, town and flat_model to one-hot encoding
cols = ["town", "region", "longitude", "latitude", "distance_from_cbd",
"flat_type", "flat_model", "floor_area_sqm", "median_storey", "remaining_lease",
"adjusted_price"
]
df = df[cols]
pipeline = ColumnTransformer([
# Add normalisation for numerical columns
# ("s", StandardScaler(), ["longitude", "latitude", "distance_from_cbd", "floor_area_sqm", "median_storey", "remaining_lease"]),
("o", OrdinalEncoder(), ["flat_type"]),
("n", OneHotEncoder(sparse_output=False),
["town", "flat_model", "region"]),
], remainder='passthrough', verbose_feature_names_out=False)
pipeline.set_output(transform="pandas")
df = pipeline.fit_transform(df)
# %% [markdown]
# # Split Train-Test-Validation
# %%
# Split dataset randomly into 80% training and 20% test, then split training into 80% training and 20% validation
train, test = train_test_split(df, test_size=0.2, random_state=42)
train, val = train_test_split(train, test_size=0.2, random_state=42)
# %%
# Validate that the split is correct
print("Train size: ", len(train))
print("Validation size: ", len(val))
print("Test size: ", len(test))
# Validate that the split is a representative sample of the original dataset
print("Train mean: ", train["adjusted_price"].mean())
print("Validation mean: ", val["adjusted_price"].mean())
print("Test mean: ", test["adjusted_price"].mean())
# %%
# Split into X and y
X_train = train.drop(columns=["adjusted_price"])
y_train = train["adjusted_price"]
X_val = val.drop(columns=["adjusted_price"])
y_val = val["adjusted_price"]
X_test = test.drop(columns=["adjusted_price"])
y_test = test["adjusted_price"]
# %% [markdown]
# # Training Models
# %%
# Get MSE, MAE and MPE for model where we predict the mean of the training set
# dataset_mean = df["adjusted_price"].mean()
# dataset_median = df["adjusted_price"].median()
# mean = y_train.median()
# y_pred = np.full(len(y_val), mean)
# print("MSE: ", mean_squared_error(y_val, y_pred))
# print("MAE: ", mean_absolute_error(y_val, y_pred))
# print("MPE: ", mean_absolute_percentage_error(y_val, y_pred))
# print("Mean: ", dataset_mean)
# print("Median: ", dataset_median)
# %%
# # Calculate f_regression scores for each feature
# from sklearn.feature_selection import f_regression
# # Sort feature names by f_regression scores
# feature_names = X_train.columns
# scores = f_regression(X_train, y_train)[0]
# feature_scores = pd.DataFrame({"feature": feature_names, "score": scores})
# feature_scores.sort_values(by="score", ascending=False)
# %%
# Train Linear Regression and evaluate on validation set
# from sklearn.linear_model import LinearRegression
# lin_reg = LinearRegression()
# lin_reg.fit(X_train, y_train)
# # Print MSE and MAE
# y_val_pred = lin_reg.predict(X_val)
# print("MSE for linear regression model 1 =>", mean_squared_error(y_val, y_val_pred))
# print("MAE for linear regression model 1 =>", mean_absolute_error(y_val, y_val_pred))
# print("MAPE for linear regression model 1 =>", mean_absolute_percentage_error(y_val, y_val_pred))
# %%
# Train Ridge Regression and evalue on validation set
# rr = Ridge(alpha=1).fit(X_train, y_train)
# y_val_pred = rr.predict(X_val)
# print("MSE for ridge regression alpha 1 =>",
# mean_squared_error(y_val, y_val_pred))
# print("MAE for ridge regression alpha 1 =>",
# mean_absolute_error(y_val, y_val_pred))
# rr = Ridge(alpha=10).fit(X_train, y_train)
# y_val_pred = rr.predict(X_val)
# print("MSE for ridge regression alpha 10 =>",
# mean_squared_error(y_val, y_val_pred))
# print("MAE for ridge regression alpha 10 =>",
# mean_absolute_error(y_val, y_val_pred))
# rr = Ridge(alpha=100).fit(X_train, y_train)
# y_val_pred = rr.predict(X_val)
# print("MSE for ridge regression alpha 100 =>",
# mean_squared_error(y_val, y_val_pred))
# print("MAE for ridge regression alpha 100 =>",
# mean_absolute_error(y_val, y_val_pred))
# rr = Ridge(alpha=1000).fit(X_train, y_train)
# y_val_pred = rr.predict(X_val)
# print("MSE for ridge regression alpha 1000 =>",
# mean_squared_error(y_val, y_val_pred))
# print("MAE for ridge regression alpha 1000 =>",
# mean_absolute_error(y_val, y_val_pred))
# rr = Ridge(alpha=10000).fit(X_train, y_train)
# y_val_pred = rr.predict(X_val)
# print("MSE for ridge regression alpha 10000 =>",
# mean_squared_error(y_val, y_val_pred))
# print("MAE for ridge regression alpha 10000 =>",
# mean_absolute_error(y_val, y_val_pred))
# rr = Ridge(alpha=100000).fit(X_train, y_train)
# y_val_pred = rr.predict(X_val)
# print("MSE for ridge regression alpha 10000 =>",
# mean_squared_error(y_val, y_val_pred))
# print("MAE for ridge regression alpha 10000 =>",
# mean_absolute_error(y_val, y_val_pred))
# %%
# # Train support vector regression and evaluate on validation set
# from sklearn.svm import SVR
# svr = SVR(kernel="linear", C=1, epsilon=0.1)
# svr.fit(X_train, y_train)
# y_val_pred = svr.predict(X_val)
# print("MSE for SVR =>", mean_squared_error(y_val, y_val_pred))
# print("MAE for SVR =>", mean_absolute_error(y_val, y_val_pred))
# %%
# Train Decison Tree Regressor and evaluate on validation set
# from sklearn.tree import DecisionTreeRegressor
# tree_reg = DecisionTreeRegressor(random_state=42).fit(X_train, y_train)
# y_val_pred = tree_reg.predict(X_val)
# print("MSE for decision tree regression model 1 =>", mean_squared_error(y_val, y_val_pred))
# print("MAE for decision tree regression model 1 =>", mean_absolute_error(y_val, y_val_pred))
# print("MAPE for decision tree regression model 1 =>", mean_absolute_percentage_error(y_val, y_val_pred))
# print(tree_reg.get_depth())
# %%
# train using k-nearest neighbors
# from sklearn.neighbors import KNeighborsRegressor
# knn_reg = KNeighborsRegressor(weights="distance", n_jobs=8).fit(X_train, y_train)
# y_val_pred = knn_reg.predict(X_val)
# print("MSE for k-nearst neighbors regression model 1 =>", mean_squared_error(y_val, y_val_pred))
# print("MAE for k-nearst neighbors regression model 1 =>", mean_absolute_error(y_val, y_val_pred))
# print("MAPE for k-nearst neighbors regression model 1 =>", mean_absolute_percentage_error(y_val, y_val_pred))
# %%
# # Train Linear support vector regressor and evaluate on validation set
# from sklearn.svm import LinearSVR
# svm_reg = LinearSVR(random_state=42).fit(X_train, y_train)
# y_val_pred = svm_reg.predict(X_val)
# print("MSE for linear support vector regression model 1 =>", mean_squared_error(y_val, y_val_pred))
# print("MAE for linear support vector regression model 1 =>", mean_absolute_error(y_val, y_val_pred))
# %%
# Train Random Forest Regressor and evaluate on validation set
# forest_reg = RandomForestRegressor(
# n_estimators=100, random_state=42, n_jobs=8).fit(X_train, y_train)
# y_val_pred = forest_reg.predict(X_val)
# print("MSE for random forest regression model 1 =>",
# mean_squared_error(y_val, y_val_pred))
# print("MAE for random forest regression model 1 =>",
# mean_absolute_error(y_val, y_val_pred))
# print("MAPE for random forest regression model 1 =>",
# mean_absolute_percentage_error(y_val, y_val_pred))
# %% [markdown]
# # Tune Random Forest Regressor
# %%
# Use grid search to find best hyperparameters for random forest regressor
param_grid = [
{'n_estimators': [3, 10, 30, 100]},
]
regr = RandomForestRegressor(random_state=0)
grid_search = GridSearchCV(regr, param_grid, cv=2, verbose=2,
scoring='neg_mean_squared_error', return_train_score=True)
grid_search.fit(X_train, y_train)
print(grid_search.best_params_)
print(grid_search.best_estimator_)
# %%
# Visualise adjusted_price per sqm on Singapore map
# import matplotlib.colors as colors
def visualise(df, vmin, vmax):
df_sorted = df.sort_values(by='price_per_sqm')
x = df_sorted['longitude']
y = df_sorted['latitude']
c = df_sorted['price_per_sqm']
plt.rcParams['figure.figsize'] = [20, 10]
plt.rcParams['figure.dpi'] = 100
# add image of singapore map
img = plt.imread(
'data/3247px-Singapore_location_map_(main_island).svg.png')
plt.imshow(img, extent=[103.557, 104.131, 1.129, 1.493])
# set axes limits
plt.xlim(103.62, 104.03)
plt.ylim(1.23, 1.465)
# Set axes titles
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.scatter(x, y, s=0.01, c=c, cmap='OrRd',
norm=colors.Normalize(vmin=vmin, vmax=vmax), alpha=0.8)
cbar = plt.colorbar()
cbar.set_label('Price per sqm', rotation=270, labelpad=20)
ax = plt.gca()
ax.set_aspect('equal', adjustable='box')
plt.show()
# df2 = df
# df2["price_per_sqm"] = df2["adjusted_price"] / df2["floor_area_sqm"]
# visualise(df2, df2["price_per_sqm"].quantile(0.10), df2["price_per_sqm"].quantile(0.90))
# %% [markdown]
# ###