-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathscript.r
88 lines (57 loc) · 2.07 KB
/
script.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Code for figs for EJE paper
# To do: -----------------------------------------------------------------
# Load packages -----------------------------------------------------------
rm(list=ls())
require(plyr)
require(tidyr)
require(dplyr)
require(stringr)
require(ggplot2)
require(lattice)
require(latticeExtra)
require(RColorBrewer)
require(grid)
require(xtable)
# for smoothing
require(fields)
require(spatstat)
# Manage data (base and derived) ------------------------------------------
source("scripts/manage_data.R")
# Figures and tables -----------------------------------------------------------------
# Correlations ------------------------------------------------------------
# Correlations : mean and var, e0 and e5 ------------------------------------------------------------
# correlations between means and variances for e0 and e5
dif_mnvars_e0 %>%
arrange(sex, year) %>%
select(year, sex, ex=mean_death_overall, vx=var_death_overall) %>%
distinct %>%
ddply(., .(sex), function(x) round(cor(x=x$ex, y= x$vx), 2))
dif_mnvars_e5 %>%
arrange(sex, year) %>%
select(year, sex, ex=mean_death_overall, vx=var_death_overall) %>%
distinct %>%
ddply(., .(sex), function(x) round(cor(x=x$ex, y= x$vx), 2))
dif_mnvars_e65 %>%
arrange(sex, year) %>%
select(year, sex, ex=mean_death_overall, vx=var_death_overall) %>%
distinct %>%
ddply(., .(sex), function(x) round(cor(x=x$ex, y= x$vx), 2))
# Now for 1950 onwards
dif_mnvars_e0 %>%
arrange(sex, year) %>%
select(year, sex, ex=mean_death_overall, vx=var_death_overall) %>%
distinct %>%
filter(year >=1950) %>%
ddply(., .(sex), function(x) round(cor(x=x$ex, y= x$vx), 2))
dif_mnvars_e5 %>%
arrange(sex, year) %>%
select(year, sex, ex=mean_death_overall, vx=var_death_overall) %>%
distinct %>%
filter(year >=1950) %>%
ddply(., .(sex), function(x) round(cor(x=x$ex, y= x$vx), 2))
dif_mnvars_e65 %>%
arrange(sex, year) %>%
select(year, sex, ex=mean_death_overall, vx=var_death_overall) %>%
distinct %>%
filter(year >=1950) %>%
ddply(., .(sex), function(x) round(cor(x=x$ex, y= x$vx), 2))