forked from chl8856/DeepIMV
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·195 lines (132 loc) · 6.59 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import tensorflow as tf
import random
import sys, os
from sklearn.model_selection import train_test_split
import import_data as impt
from helper import f_get_minibatch_set, evaluate
from class_DeepIMV_AISTATS import DeepIMV_AISTATS
import argparse
def init_arg():
parser = argparse.ArgumentParser()
parser.add_argument('--seed', default=1234, help='random seed', type=int)
parser.add_argument('--h_dim_p', default=100, help='number of hidden nodes -- predictor', type=int)
parser.add_argument('--num_layers_p', default=2, help='number of layers -- predictor', type=int)
parser.add_argument('--h_dim_e', default=100, help='number of hidden nodes -- encoder', type=int)
parser.add_argument('--num_layers_e', default=3, help='number of layers -- encoder', type=int)
parser.add_argument('--z_dim', default=50, help='dimension of latent representations', type=int)
parser.add_argument("--lr_rate", default=1e-4, help='learning rate', type=float)
parser.add_argument("--l1_reg", default=0., help='l1-regularization', type=float)
parser.add_argument("--itrs", default=50000, type=int)
parser.add_argument("--step_size", default=1000, type=int)
parser.add_argument("--max_flag", default=20, type=int)
parser.add_argument("--mb_size", default=32, type=int)
parser.add_argument("--keep_prob", help='keep probability for dropout', default=0.7, type=float)
parser.add_argument('--alpha', default=1.0, help='coefficient -- alpha', type=float)
parser.add_argument('--beta', default=0.01, help='coefficient -- beta', type=float)
parser.add_argument('--save_path', default='./storage/', help='path to save files', type=str)
return parser.parse_args()
if __name__ == '__main__':
args = init_arg()
seed = args.seed
### import multi-view dataset with arbitrary view-missing patterns.
X_set, Y_onehot, Mask = impt.import_incomplete_handwritten()
tr_X_set, te_X_set, va_X_set = {}, {}, {}
# 64/16/20 training/validation/testing split
for m in range(len(X_set)):
tr_X_set[m],te_X_set[m] = train_test_split(X_set[m], test_size=0.2, random_state=seed)
tr_X_set[m],va_X_set[m] = train_test_split(tr_X_set[m], test_size=0.2, random_state=seed)
tr_Y_onehot,te_Y_onehot, tr_M,te_M = train_test_split(Y_onehot, Mask, test_size=0.2, random_state=seed)
tr_Y_onehot,va_Y_onehot, tr_M,va_M = train_test_split(tr_Y_onehot, tr_M, test_size=0.2, random_state=seed)
x_dim_set = [tr_X_set[m].shape[1] for m in range(len(tr_X_set))]
y_dim = np.shape(tr_Y_onehot)[1]
if y_dim == 1:
y_type = 'continuous'
elif y_dim == 2:
y_type = 'binary'
else:
y_type = 'categorical'
mb_size = args.mb_size
steps_per_batch = int(np.shape(tr_M)[0]/mb_size) #for moving average
input_dims = {
'x_dim_set': x_dim_set,
'y_dim': y_dim,
'y_type': y_type,
'z_dim': args.z_dim,
'steps_per_batch': steps_per_batch
}
network_settings = {
'h_dim_p1': args.h_dim_p,
'num_layers_p1': args.num_layers_p, #view-specific
'h_dim_p2': args.h_dim_p,
'num_layers_p2': args.num_layers_p, #multi-view
'h_dim_e': args.h_dim_e,
'num_layers_e': args.num_layers_e,
'fc_activate_fn': tf.nn.relu,
'reg_scale': args.l1_reg,
}
lr_rate = args.lr_rate
iteration = args.itrs
stepsize = args.step_size
max_flag = args.max_flag
k_prob = args.keep_prob
alpha = args.alpha
beta = args.beta
save_path = args.save_path
if not os.path.exists(save_path):
os.makedirs(save_path)
tf.reset_default_graph()
gpu_options = tf.GPUOptions()
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
model = DeepIMV_AISTATS(sess, "DeepIMV_AISTATS", input_dims, network_settings)
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
##### TRAINING
min_loss = 1e+8
max_acc = 0.0
tr_avg_Lt, tr_avg_Lp, tr_avg_Lkl, tr_avg_Lps, tr_avg_Lkls, tr_avg_Lc = 0, 0, 0, 0, 0, 0
va_avg_Lt, va_avg_Lp, va_avg_Lkl, va_avg_Lps, va_avg_Lkls, va_avg_Lc = 0, 0, 0, 0, 0, 0
stop_flag = 0
for itr in range(iteration):
x_mb_set, y_mb, m_mb = f_get_minibatch_set(mb_size, tr_X_set, tr_Y_onehot, tr_M)
_, Lt, Lp, Lkl, Lps, Lkls, Lc = model.train(x_mb_set, y_mb, m_mb, alpha, beta, lr_rate, k_prob)
tr_avg_Lt += Lt/stepsize
tr_avg_Lp += Lp/stepsize
tr_avg_Lkl += Lkl/stepsize
tr_avg_Lps += Lps/stepsize
tr_avg_Lkls += Lkls/stepsize
tr_avg_Lc += Lc/stepsize
x_mb_set, y_mb, m_mb = f_get_minibatch_set(min(np.shape(va_M)[0], mb_size), va_X_set, va_Y_onehot, va_M)
Lt, Lp, Lkl, Lps, Lkls, Lc, _, _ = model.get_loss(x_mb_set, y_mb, m_mb, alpha, beta)
va_avg_Lt += Lt/stepsize
va_avg_Lp += Lp/stepsize
va_avg_Lkl += Lkl/stepsize
va_avg_Lps += Lps/stepsize
va_avg_Lkls += Lkls/stepsize
va_avg_Lc += Lc/stepsize
if (itr+1)%stepsize == 0:
y_pred, y_preds = model.predict_ys(va_X_set, va_M)
# score =
print( "{:05d}: TRAIN| Lt={:.3f} Lp={:.3f} Lkl={:.3f} Lps={:.3f} Lkls={:.3f} Lc={:.3f} | VALID| Lt={:.3f} Lp={:.3f} Lkl={:.3f} Lps={:.3f} Lkls={:.3f} Lc={:.3f} score={}".format(
itr+1, tr_avg_Lt, tr_avg_Lp, tr_avg_Lkl, tr_avg_Lps, tr_avg_Lkls, tr_avg_Lc,
va_avg_Lt, va_avg_Lp, va_avg_Lkl, va_avg_Lps, va_avg_Lkls, va_avg_Lc, evaluate(va_Y_onehot, np.mean(y_preds, axis=0), y_type))
)
if min_loss > va_avg_Lt:
min_loss = va_avg_Lt
stop_flag = 0
saver.save(sess, save_path + 'best_model')
print('saved...')
else:
stop_flag += 1
tr_avg_Lt, tr_avg_Lp, tr_avg_Lkl, tr_avg_Lps, tr_avg_Lkls, tr_avg_Lc = 0, 0, 0, 0, 0, 0
va_avg_Lt, va_avg_Lp, va_avg_Lkl, va_avg_Lps, va_avg_Lkls, va_avg_Lc = 0, 0, 0, 0, 0, 0
if stop_flag >= max_flag:
break
print('FINISHED...')
##### TESTING
saver.restore(sess, save_path + 'best_model')
_, pred_ys = model.predict_ys(te_X_set, te_M)
pred_y = np.mean(pred_ys, axis=0)
print('Test Score: {}'.format(evaluate(te_Y_onehot, pred_y, y_type)))