forked from Syyabb/PUD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
222 lines (191 loc) · 5.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch.nn as nn
import torch.nn.functional as F
import resnet as resnet_mod
import pytorch_cifar.models.resnet as resnet
import classifier_models.preact_resnet as preact_resnet
from classifier_models import PreActResNet18, ResNet18
import collections
class BasicBlockNoReLU(nn.Module):
expansion = 1
def __init__(self, module):
super().__init__()
self.conv1 = module.conv1
self.bn1 = module.bn1
self.conv2 = module.conv2
self.bn2 = module.bn2
self.shortcut = module.shortcut
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
return out
class SequentialImageNetwork(nn.Sequential):
def __init__(self, net=resnet.ResNet18()):
if isinstance(net, collections.OrderedDict):
super().__init__(net)
return
self.net_holder = (net,)
i = 1
layers = []
name = f"layer{i}"
while hasattr(net, name):
print(name)
layers.extend(list(getattr(net, name)))
i += 1
name = f"layer{i}"
layers2 = []
for layer in layers:
if isinstance(layer, resnet.BasicBlock):
layers2.append(BasicBlockNoReLU(layer))
layers2.append(nn.ReLU())
else:
layers2.append(layer)
super().__init__(
net.conv1,
net.bn1,
nn.ReLU(),
net.maxpool,
*layers2,
net.avgpool,
nn.Flatten(),
net.fc
)
@property
def net(self):
return self.net_holder[0]
class BasicBlockNoReLUpre(nn.Module):
expansion = 1
def __init__(self, module):
super().__init__()
self.conv1 = module.conv1
self.bn1 = module.bn1
self.conv2 = module.conv2
self.bn2 = module.bn2
if hasattr(module, "shortcut"):
self.shortcut = module.shortcut
def forward(self, x):
out = F.relu(self.bn1(x))
shortcut = self.shortcut(out) if hasattr(self, "shortcut") else x
out = self.conv1(out)
out = self.conv2(F.relu(self.bn2(out)))
out += shortcut
return out
class SequentialImageNetwork_pre(nn.Sequential):
def __init__(self, net=PreActResNet18(10)):
if isinstance(net, collections.OrderedDict):
super().__init__(net)
return
self.net_holder = (net,)
i = 1
layers = []
name = f"layer{i}"
while hasattr(net, name):
layers.extend(list(getattr(net, name)))
i += 1
name = f"layer{i}"
layers2 = []
for layer in layers:
if isinstance(layer, preact_resnet.PreActBlock):
layers2.append(BasicBlockNoReLUpre(layer))
else:
layers2.append(layer)
super().__init__(
net.conv1,
*layers2,
nn.AvgPool2d(8 if net.in_planes == 64 else 4),
nn.Flatten(),
net.linear,
)
@property
def net(self):
return self.net_holder[0]
class SequentialImageNetwork_imgnet(nn.Sequential):
def __init__(self, net=PreActResNet18(10)):
if isinstance(net, collections.OrderedDict):
super().__init__(net)
return
self.net_holder = (net,)
i = 1
layers = []
name = f"layer{i}"
while hasattr(net, name):
layers.extend(list(getattr(net, name)))
i += 1
name = f"layer{i}"
layers2 = []
for layer in layers:
if isinstance(layer, preact_resnet.PreActBlock):
layers2.append(BasicBlockNoReLUpre(layer))
else:
layers2.append(layer)
super().__init__(
net.conv1,
net.bn1,
net.relu,
net.maxpool,
*layers2,
net.avgpool,
nn.Flatten(),
net.fc,
)
@property
def net(self):
return self.net_holder[0]
class BasicBlockSplitter(nn.Module):
def __init__(self, block: resnet.BasicBlock, step="add"):
super().__init__()
self.block = block
self.step = step
def forward(self, x):
if self.step == "identity":
return x
shortcut = self.block.shortcut(x)
if self.step == "shortcut":
return shortcut
x = self.block.conv1(x)
if self.step == "conv1":
return x
x = self.block.bn1(x)
if self.step == "bn1":
return x
x = F.relu(x)
if self.step == "relu1":
return x
x = self.block.conv2(x)
if self.step == "conv2":
return x
x = self.block.bn2(x)
if self.step == "bn2":
return x
x += shortcut
if self.step == "add":
return x
x = F.relu(x)
if self.step == "relu2":
return x
return x
class SequentialImageNetworkMod(nn.Sequential):
def __init__(self, net=resnet_mod.resnet32()):
if isinstance(net, collections.OrderedDict):
super().__init__(net)
return
self.net_holder = (net,)
i = 1
layers = []
name = f"layer{i}"
while hasattr(net, name):
layers.extend(list(getattr(net, name)))
i += 1
name = f"layer{i}"
super().__init__(
net.conv1,
*layers,
net.final_bn,
nn.LeakyReLU(0.1),
nn.AvgPool2d(8),
nn.Flatten(),
net.linear,
)
@property
def net(self):
return self.net_holder[0]