-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcreate_hdf5_dataset.py
199 lines (143 loc) · 6.77 KB
/
create_hdf5_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#!/usr/bin/env python
import logging
import io
import argparse
import numpy
import h5py
from fuel.datasets.hdf5 import H5PYDataset
from utils import load_pretrained_embeddings
FORMAT = '[%(asctime)s] %(levelname)s - %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
LOGGER = logging.getLogger(__name__)
def count_num_lines(doc_path):
with io.open(doc_path, encoding='utf-8') as f:
for i, line in enumerate(f):
pass
return i + 1
def convert_documents(doc_path, pretrained_word_emb, _mb_sz):
vocab = {word: index for (index, word) in pretrained_word_emb['vocab']}
Wemb = pretrained_word_emb['Wemb']
n_max_docs = count_num_lines(doc_path)
mb_sz = min(n_max_docs, _mb_sz)
word_dim = Wemb.shape[1]
docs = []
with open(doc_path) as f:
for doc_id, doc in enumerate(f):
words = doc.strip().split()
idx_list = []
for word in words:
if word in vocab:
idx_list.append(vocab[word])
assert len(idx_list) > 0, '{}'.format(doc_id)
docs.append(idx_list)
if len(docs) == mb_sz:
doc_vectors = numpy.zeros([mb_sz, word_dim])
for idx_in_mb, word_indices in enumerate(docs):
doc_vectors[idx_in_mb] = Wemb[word_indices].mean(axis=0)
yield doc_vectors[:]
docs = []
if len(docs) > 0:
doc_vectors = numpy.zeros([len(docs), word_dim])
for idx_in_mb, word_indices in enumerate(docs):
doc_vectors[idx_in_mb] = Wemb[word_indices].mean(axis=0)
yield doc_vectors[:]
pass
def load_vocab(path):
with io.open(path, encoding='utf-8') as f:
items = [line.strip().split()[1] for line in f]
vocab = {item: idx for idx, item in enumerate(items)}
return vocab
def convert_label_sets(label_path, label_vocab):
n_sets = count_num_lines(label_path)
target_vectors = [None] * n_sets
with open(label_path) as f:
for label_set_id, label_set in enumerate(f):
labels = label_set.strip().split()
label_indices = [label_vocab[label]
for label in labels if label in label_vocab]
target_vectors[label_set_id] = label_indices
return target_vectors
def main(trd_path, trl_path, vad_path, val_path, tsd_path, tsl_path,
label_vocab_path, word_emb_path, output_path):
label_vocab = load_vocab(label_vocab_path)
pretrained_emb = load_pretrained_embeddings(word_emb_path)
LOGGER.info('Converting labels...')
train_label = convert_label_sets(trl_path, label_vocab)
valid_label = convert_label_sets(val_path, label_vocab)
test_label = convert_label_sets(tsl_path, label_vocab)
LOGGER.info('Done')
n_trd, n_vad, n_tsd = \
len(train_label), len(valid_label), len(test_label)
LOGGER.info('Number of train label sets: {}'.format(n_trd))
LOGGER.info('Number of valid label sets: {}'.format(n_vad))
LOGGER.info('Number of test label sets: {}'.format(n_tsd))
n_total_docs = n_trd + n_vad + n_tsd
n_dim = pretrained_emb['Wemb'].shape[1]
mb_sz = 500000
with h5py.File(output_path, mode='w') as f:
features = f.create_dataset('features', (n_total_docs, n_dim),
dtype='float32')
n_processed = 0
LOGGER.info('Converting train documents ...')
for train_data in convert_documents(trd_path, pretrained_emb, mb_sz):
features[n_processed: n_processed+train_data.shape[0]] = train_data
n_processed += train_data.shape[0]
LOGGER.info('{} / {}'.format(n_processed, n_total_docs))
assert n_processed == n_trd
LOGGER.info('Done')
LOGGER.info('Converting valid documents ...')
for valid_data in convert_documents(vad_path, pretrained_emb, mb_sz):
features[n_processed: n_processed+valid_data.shape[0]] = valid_data
n_processed += valid_data.shape[0]
LOGGER.info('{} / {}'.format(n_processed, n_total_docs))
assert n_processed == n_vad + n_trd
LOGGER.info('Done')
LOGGER.info('Converting test documents ...')
for test_data in convert_documents(tsd_path, pretrained_emb, mb_sz):
features[n_processed: n_processed+test_data.shape[0]] = test_data
n_processed += test_data.shape[0]
LOGGER.info('{} / {}'.format(n_processed, n_total_docs))
assert n_processed == n_total_docs
LOGGER.info('Done')
_dtype = h5py.special_dtype(vlen=numpy.dtype('uint16'))
targets = f.create_dataset('targets', (n_total_docs,), dtype=_dtype)
all_target_labels = train_label + valid_label + test_label
assert n_total_docs == len(all_target_labels)
targets[...] = numpy.array(all_target_labels)
# assign labels to the dataset
features.dims[0].label = 'batch'
features.dims[1].label = 'feature'
targets.dims[0].label = 'batch'
targets_shapes = f.create_dataset(
'targets_shapes', (n_total_docs, 1), dtype='int32')
targets_shapes[...] = numpy.array(
[len(labels) for labels in all_target_labels])[:, None]
targets.dims.create_scale(targets_shapes, 'shapes')
targets.dims[0].attach_scale(targets_shapes)
targets_shape_labels = f.create_dataset(
'targets_shape_labels', (1,), dtype='S6')
targets_shape_labels[...] = ['length'.encode('utf8')]
targets.dims.create_scale(targets_shape_labels, 'shape_labels')
targets.dims[0].attach_scale(targets_shape_labels)
split_dict = {
'train': {'features': (0, n_trd), 'targets': (0, n_trd)},
'valid': {'features': (n_trd, n_trd + n_vad),
'targets': (n_trd, n_trd + n_vad)},
'test': {'features': (n_trd + n_vad, n_total_docs),
'targets': (n_trd + n_vad, n_total_docs)}}
f.attrs['split'] = H5PYDataset.create_split_array(split_dict)
f.flush()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--trd', type=str, required=True)
parser.add_argument('--trl', type=str, required=True)
parser.add_argument('--vad', type=str, required=True)
parser.add_argument('--val', type=str, required=True)
parser.add_argument('--tsd', type=str, required=True)
parser.add_argument('--tsl', type=str, required=True)
parser.add_argument('--label_vocab', type=str, required=True)
parser.add_argument('--word_emb', type=str, required=True)
parser.add_argument('--output', type=str, required=True)
args = parser.parse_args()
main(args.trd, args.trl, args.vad, args.val, args.tsd, args.tsl,
args.label_vocab, args.word_emb, args.output)