forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
316 lines (280 loc) · 11.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
# Copyright 2023 Johns Hopkins University (author: Desh Raj)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple
import k2
import torch
import torch.nn as nn
from encoder_interface import EncoderInterface
from icefall.utils import add_sos
class SURT(nn.Module):
"""It implements Streaming Unmixing and Recognition Transducer (SURT).
https://arxiv.org/abs/2011.13148
"""
def __init__(
self,
mask_encoder: nn.Module,
encoder: EncoderInterface,
joint_encoder_layer: Optional[nn.Module],
decoder: nn.Module,
joiner: nn.Module,
num_channels: int,
encoder_dim: int,
decoder_dim: int,
joiner_dim: int,
vocab_size: int,
):
"""
Args:
mask_encoder:
It is the masking network. It generates a mask for each channel of the
encoder. These masks are applied to the input features, and then passed
to the transcription network.
encoder:
It is the transcription network in the paper. Its accepts
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
It returns two tensors: `logits` of shape (N, T, encoder_dm) and
`logit_lens` of shape (N,).
decoder:
It is the prediction network in the paper. Its input shape
is (N, U) and its output shape is (N, U, decoder_dim).
It should contain one attribute: `blank_id`.
joiner:
It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim).
Its output shape is (N, T, U, vocab_size). Note that its output contains
unnormalized probs, i.e., not processed by log-softmax.
num_channels:
It is the number of channels that the input features will be split into.
In general, it should be equal to the maximum number of simultaneously
active speakers. For most real scenarios, using 2 channels is sufficient.
"""
super().__init__()
assert isinstance(encoder, EncoderInterface), type(encoder)
assert hasattr(decoder, "blank_id")
self.mask_encoder = mask_encoder
self.encoder = encoder
self.joint_encoder_layer = joint_encoder_layer
self.decoder = decoder
self.joiner = joiner
self.num_channels = num_channels
self.simple_am_proj = nn.Linear(
encoder_dim,
vocab_size,
)
self.simple_lm_proj = nn.Linear(decoder_dim, vocab_size)
self.ctc_output = nn.Sequential(
nn.Dropout(p=0.1),
nn.Linear(encoder_dim, vocab_size),
nn.LogSoftmax(dim=-1),
)
def forward_helper(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: k2.RaggedTensor,
prune_range: int = 5,
am_scale: float = 0.0,
lm_scale: float = 0.0,
reduction: str = "sum",
beam_size: int = 10,
use_double_scores: bool = False,
subsampling_factor: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Compute transducer loss for one branch of the SURT model.
"""
encoder_out, x_lens = self.encoder(x, x_lens)
assert torch.all(x_lens > 0)
if self.joint_encoder_layer is not None:
encoder_out = self.joint_encoder_layer(encoder_out)
# compute ctc log-probs
ctc_output = self.ctc_output(encoder_out)
# For the decoder, i.e., the prediction network
row_splits = y.shape.row_splits(1)
y_lens = row_splits[1:] - row_splits[:-1]
blank_id = self.decoder.blank_id
sos_y = add_sos(y, sos_id=blank_id)
# sos_y_padded: [B, S + 1], start with SOS.
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
# decoder_out: [B, S + 1, decoder_dim]
decoder_out = self.decoder(sos_y_padded)
# Note: y does not start with SOS
# y_padded : [B, S]
y_padded = y.pad(mode="constant", padding_value=0)
y_padded = y_padded.to(torch.int64)
boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device)
boundary[:, 2] = y_lens
boundary[:, 3] = x_lens
lm = self.simple_lm_proj(decoder_out)
am = self.simple_am_proj(encoder_out)
with torch.cuda.amp.autocast(enabled=False):
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
lm=lm.float(),
am=am.float(),
symbols=y_padded,
termination_symbol=blank_id,
lm_only_scale=lm_scale,
am_only_scale=am_scale,
boundary=boundary,
reduction=reduction,
return_grad=True,
)
# ranges : [B, T, prune_range]
ranges = k2.get_rnnt_prune_ranges(
px_grad=px_grad,
py_grad=py_grad,
boundary=boundary,
s_range=prune_range,
)
# am_pruned : [B, T, prune_range, encoder_dim]
# lm_pruned : [B, T, prune_range, decoder_dim]
am_pruned, lm_pruned = k2.do_rnnt_pruning(
am=self.joiner.encoder_proj(encoder_out),
lm=self.joiner.decoder_proj(decoder_out),
ranges=ranges,
)
# logits : [B, T, prune_range, vocab_size]
# project_input=False since we applied the decoder's input projections
# prior to do_rnnt_pruning (this is an optimization for speed).
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
with torch.cuda.amp.autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(
logits=logits.float(),
symbols=y_padded,
ranges=ranges,
termination_symbol=blank_id,
boundary=boundary,
reduction=reduction,
)
# Compute ctc loss
supervision_segments = torch.stack(
(
torch.arange(len(x_lens), device="cpu"),
torch.zeros_like(x_lens, device="cpu"),
torch.clone(x_lens).detach().cpu(),
),
dim=1,
).to(torch.int32)
# We need to sort supervision_segments in decreasing order of num_frames
indices = torch.argsort(supervision_segments[:, 2], descending=True)
supervision_segments = supervision_segments[indices]
# Works with a BPE model
decoding_graph = k2.ctc_graph(y, modified=False, device=x.device)
dense_fsa_vec = k2.DenseFsaVec(
ctc_output,
supervision_segments,
allow_truncate=subsampling_factor - 1,
)
ctc_loss = k2.ctc_loss(
decoding_graph=decoding_graph,
dense_fsa_vec=dense_fsa_vec,
output_beam=beam_size,
reduction="none",
use_double_scores=use_double_scores,
)
return (simple_loss, pruned_loss, ctc_loss)
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: k2.RaggedTensor,
prune_range: int = 5,
am_scale: float = 0.0,
lm_scale: float = 0.0,
reduction: str = "sum",
beam_size: int = 10,
use_double_scores: bool = False,
subsampling_factor: int = 1,
return_masks: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Args:
x:
A 3-D tensor of shape (N, T, C).
x_lens:
A 1-D tensor of shape (N,). It contains the number of frames in `x`
before padding.
y:
A ragged tensor of shape (N*num_channels, S). It contains the labels
of the N utterances. The labels are in the range [0, vocab_size). All
the channels are concatenated together one after another.
prune_range:
The prune range for rnnt loss, it means how many symbols(context)
we are considering for each frame to compute the loss.
am_scale:
The scale to smooth the loss with am (output of encoder network)
part
lm_scale:
The scale to smooth the loss with lm (output of predictor network)
part
reduction:
"sum" to sum the losses over all utterances in the batch.
"none" to return the loss in a 1-D tensor for each utterance
in the batch.
beam_size:
The beam size used in CTC decoding.
use_double_scores:
If True, use double precision for CTC decoding.
subsampling_factor:
The subsampling factor of the model. It is used to compute the
supervision segments for CTC loss.
return_masks:
If True, return the masks as well as masked features.
Returns:
Return the transducer loss.
Note:
Regarding am_scale & lm_scale, it will make the loss-function one of
the form:
lm_scale * lm_probs + am_scale * am_probs +
(1-lm_scale-am_scale) * combined_probs
"""
assert x.ndim == 3, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.num_axes == 2, y.num_axes
assert x.size(0) == x_lens.size(0), (x.size(), x_lens.size())
# Apply the mask encoder
B, T, F = x.shape
processed = self.mask_encoder(x) # B,T,F*num_channels
masks = processed.view(B, T, F, self.num_channels).unbind(dim=-1)
x_masked = [x * m for m in masks]
# Recognition
# Stack the inputs along the batch axis
h = torch.cat(x_masked, dim=0)
h_lens = torch.cat([x_lens for _ in range(self.num_channels)], dim=0)
simple_loss, pruned_loss, ctc_loss = self.forward_helper(
h,
h_lens,
y,
prune_range,
am_scale,
lm_scale,
reduction=reduction,
beam_size=beam_size,
use_double_scores=use_double_scores,
subsampling_factor=subsampling_factor,
)
# Chunks the outputs into 2 parts along batch axis and then stack them along a new axis.
simple_loss = torch.stack(
torch.chunk(simple_loss, self.num_channels, dim=0), dim=0
)
pruned_loss = torch.stack(
torch.chunk(pruned_loss, self.num_channels, dim=0), dim=0
)
ctc_loss = torch.stack(torch.chunk(ctc_loss, self.num_channels, dim=0), dim=0)
if return_masks:
return (simple_loss, pruned_loss, ctc_loss, x_masked, masks)
else:
return (simple_loss, pruned_loss, ctc_loss, x_masked)