Skip to content

Latest commit

 

History

History
198 lines (158 loc) · 6.5 KB

README.md

File metadata and controls

198 lines (158 loc) · 6.5 KB

OpenCV 调用 YOLO

首先导入相应的包同时设置所需要的参数:

import numpy as np
import argparse
import time
import cv2
import os

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
    help="path to input image")
ap.add_argument("-y", "--yolo", required=True,
    help="base path to YOLO directory")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
    help="minimum probability to filter weak detections")
ap.add_argument("-t", "--threshold", type=float, default=0.3,
    help="threshold when applying non-maxima suppression")
args = vars(ap.parse_args())

参数含义:

-- image:输入图像的路径;
-- yolo :YOLO文件路径,脚本将加载所需的YOLO文件,以便在图像上执行对象检测;
-- confidence :过滤弱检测的最小概率,默认值设置为0.5,但该值也可以随意设置;
-- threshold :非最大值抑制阈值,默认值设置为 0.3,可以在此处阅读有关非最大值抑制的

设置标注颜色:

# load the COCO class labels our YOLO model was trained on
labelsPath = os.path.sep.join([args["yolo"], "object_detection_classes_yolov3.txt"])
LABELS = open(labelsPath).read().strip().split("\n")

# initialize a list of colors to represent each possible class label
np.random.seed(666)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),
    dtype="uint8")

设置YOLO权重和配置文件的路径,并且加载网络:

# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"])
configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"])

# load our YOLO object detector trained on COCO dataset (80 classes)
print("[INFO] loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)

加载图片并且进行处理:

# load our input image and grab its spatial dimensions
image = cv2.imread(args["image"])
(H, W) = image.shape[:2]

# determine only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]

# construct a blob from the input image and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes and
# associated probabilities
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416),
    swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()

# show timing information on YOLO
print("[INFO] YOLO took {:.6f} seconds".format(end - start))

在该代码中:

  • 加载输入 图像并获得其尺寸;
  • 确定YOLO模型中的输出图层名称;
  • 从图像构造一个 blob结构;

当blob准备好了后,我们就会

  • 通过YOLO网络进行前向传递;
  • 显示YOLO的推理时间;

现在采取措施来过滤和可视化最终的结果。

首先,让我们初步化一些处理过程中需要的列表:

# initialize our lists of detected bounding boxes, confidences, and
# class IDs, respectively
boxes = []
confidences = []
classIDs = []

这些列表包括:

boxes:对象的边界框。
confidences :YOLO分配给对象的置信度值,较低的置信度值表示该对象可能不是网络认为的对象。上面的命令行参数中将过滤掉不大于 0.5阈值的对象。
classIDs:检测到的对象的类标签。

下面用YOLOlayerOutputs中的数据填充这些列表 :

# loop over each of the layer outputs
for output in layerOutputs:
    # loop over each of the detections
    for detection in output:
        # extract the class ID and confidence (i.e., probability) of
        # the current object detection
        scores = detection[5:]
        classID = np.argmax(scores)
        confidence = scores[classID]

        # filter out weak predictions by ensuring the detected
        # probability is greater than the minimum probability
        if confidence > args["confidence"]:
            # scale the bounding box coordinates back relative to the
            # size of the image, keeping in mind that YOLO actually
            # returns the center (x, y)-coordinates of the bounding
            # box followed by the boxes' width and height
            box = detection[0:4] * np.array([W, H, W, H])
            (centerX, centerY, width, height) = box.astype("int")

            # use the center (x, y)-coordinates to derive the top and
            # and left corner of the bounding box
            x = int(centerX - (width / 2))
            y = int(centerY - (height / 2))

            # update our list of bounding box coordinates, confidences,
            # and class IDs
            boxes.append([x, y, int(width), int(height)])
            confidences.append(float(confidence))
            classIDs.append(classID)

在这个块中:

  • 循环遍历每个layerOutputs;
  • 循环每个detection中output;
  • 提取 classID和 confidence;
  • 使用confidence滤除弱检测;

过滤掉了不需要的检测结果后,我们将:

  • 缩放边界框坐标,以便我们可以在原始图像上正确显示它们;
  • 提取边界框的坐标和尺寸,YOLO返回边界框坐标形式: (centerX ,centerY ,width,height);
  • 使用此信息导出边界框的左上角(x,y)坐标;
  • 更新boxes,confidences ,classIDs列表。

有了这些数据后,将应用“非最大值抑制”(non-maxima suppression,nms):

# apply non-maxima suppression to suppress weak, overlapping bounding
# boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"],
    args["threshold"])

最后在图像上绘制检测框和类文本:

# ensure at least one detection exists
if len(idxs) > 0:
    # loop over the indexes we are keeping
    for i in idxs.flatten():
        # extract the bounding box coordinates
        (x, y) = (boxes[i][0], boxes[i][1])
        (w, h) = (boxes[i][2], boxes[i][3])

        # draw a bounding box rectangle and label on the image
        color = [int(c) for c in COLORS[classIDs[i]]]
        cv2.rectangle(image, (x, y), (x + w, y + h), color, 1, lineType=cv2.LINE_AA)
        text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])
        cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,
            0.5, color, 1, lineType=cv2.LINE_AA)

# show the output image
cv2.imshow("Image", image)
cv2.waitKey(0)

识别红酒和杯子:

识别人物: