-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathload_dataset.py
133 lines (100 loc) · 4.5 KB
/
load_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# encoding = "utf-8"
import json
import numpy
filter_upper_token = ['the', 'a', 'this', 'there', 'an', 'in', 'on']
def re_upper(document, summary):
'''following https://github.com/NJUNLP/CoP'''
# document = document.split(' ')
tokens = summary.split(" ")
upper_tokens = []
for i in tokens:
if i.capitalize().replace('.', '').replace('\'s', '').replace(",", '') in document and (
i.lower() not in filter_upper_token):
i = i.capitalize()
upper_tokens.append(i)
return " ".join(upper_tokens)
class Dataset:
def __init__(self, file_name):
self.source_lines = []
self.target_lines = []
self.human_scores = []
self.data = []
self.file_name = file_name
if self.file_name=="qagscnn" or self.file_name=="qagsxsum":
self.load_qags()
elif self.file_name=="frankcnn" or self.file_name=="frankxsum":
self.load_frank()
elif self.file_name == "summeval":
self.load_summeval()
elif self.file_name == "xsumfaith":
self.load_xsumfaith()
elif "summac" in self.file_name:
self.load_summac_dataset()
def load_qags(self):
'''from https://github.com/NJUNLP/CoP'''
f = open("./data/"+self.file_name.upper()+".jsonl", "r")
lines = f.readlines()
for line in lines:
data_dict = json.loads(line.strip())
self.source_lines.append(data_dict["text"])
self.target_lines.append(data_dict["claim"])
self.human_scores.append(data_dict["score"])
self.data.append(data_dict)
def load_frank(self):
'''from https://github.com/NJUNLP/CoP'''
f = open("./data/"+self.file_name.upper()+".json", "r")
lines = f.readlines()
for line in lines:
data_dict = json.loads(line.strip())
self.source_lines.append(data_dict["text"])
data_dict["claim"] = data_dict["claim"].capitalize()
data_dict["claim"] = re_upper(data_dict["text"], data_dict["claim"])
self.target_lines.append(data_dict["claim"])
self.human_scores.append(data_dict['score'])
self.data.append(data_dict)
def load_summeval(self):
'''from https://github.com/Yale-LILY/SummEval'''
f = open("./data/model_annotations.aligned.paired.jsonl", "r", encoding = "utf-8")
lines = f.readlines()
for line in lines:
data_dict = json.loads(line.strip())
self.source_lines.append(data_dict["text"])
self.target_lines.append(data_dict["decoded"])
tmp = []
for expert in data_dict["expert_annotations"]:
tmp.append(expert["consistency"])
tmp = sum(tmp) / len(tmp)
self.human_scores.append(tmp)
data_dict["score"] = tmp
self.data.append(data_dict)
def load_summac_dataset(self):
'''from https://github.com/tingofurro/summac'''
file_name = self.file_name.split("-")[1]
for cut in ["val", "test"]:
with open("./data/"+file_name+'_'+cut+".jsonl", "r") as f:
for line in f:
line = json.loads(line.strip())
self.source_lines.append(line["document"])
self.target_lines.append(line["claim"])
self.human_scores.append(line["label"])
line["cut"] = cut
self.data.append(line)
def length_statistics(self, tokenizer):
source_len = []
target_len = []
for s in self.source_lines:
source_len.append(len(tokenizer.tokenize(s)))
for t in self.target_lines:
target_len.append(len(tokenizer.tokenize(t)))
print("source len: max {} min {} avg {} std {}".format(numpy.max(source_len), numpy.min(source_len),
numpy.mean(source_len), numpy.std(source_len)))
print("target len: max {} min {} avg {} std {}".format(numpy.max(target_len), numpy.min(target_len),
numpy.mean(target_len), numpy.std(target_len)))
# if __name__ == '__main__':
# from transformers import LlamaTokenizer
# from tqdm import tqdm
# tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
# while True:
# file_name = str(input())
# dataset = Dataset(file_name)
# dataset.length_statistics(tokenizer)