-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGeneticAlgorithm.cs
336 lines (292 loc) · 9 KB
/
GeneticAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
using System;
using System.Collections.Generic;
using System.IO;
namespace WindowsFormsApplication5
{
public delegate double GAFunction(params double[] values);
/// <summary>
/// Genetic Algorithm class
/// </summary>
public class GA
{
public GA()
{
InitialValues();
m_mutationRate = 0.05;
m_crossoverRate = 0.80;
m_populationSize = 100;
m_generationSize = 2000;
m_strFitness = "";
}
public GA(double crossoverRate,
double mutationRate,
int populationSize,
int generationSize,
int genomeSize)
{
InitialValues();
m_mutationRate = mutationRate;
m_crossoverRate = crossoverRate;
m_populationSize = populationSize;
m_generationSize = generationSize;
m_genomeSize = genomeSize;
m_strFitness = "";
}
public GA(int genomeSize)
{
InitialValues();
m_genomeSize = genomeSize;
}
public void InitialValues()
{
m_elitism = false;
}
/// <summary>
/// Method which starts the GA executing.
/// </summary>
public void Go()
{
/// -------------
/// Preconditions
/// -------------
if (getFitness == null)
throw new ArgumentNullException("Need to supply fitness function");
if (m_genomeSize == 0)
throw new IndexOutOfRangeException("Genome size not set");
/// -------------
// Create the fitness table.
m_fitnessTable = new List<double>();
m_thisGeneration = new List<Genome>(m_generationSize);
m_nextGeneration = new List<Genome>(m_generationSize);
Genome.MutationRate = m_mutationRate;
CreateGenomes();
RankPopulation();
for (int i = 0; i < m_generationSize; i++)
{
CreateNextGeneration();
RankPopulation();
}
}
private int RouletteSelection()
{
double randomFitness = m_random.NextDouble() * m_totalFitness;
int idx = -1;
int mid;
int first = 0;
int last = m_populationSize - 1;
mid = (last - first) / 2;
while (idx == -1 && first <= last)
{
if (randomFitness < m_fitnessTable[mid])
{
last = mid;
}
else if (randomFitness > m_fitnessTable[mid])
{
first = mid;
}
mid = (first + last) / 2;
// بین i و i+1
if ((last - first) == 1)
idx = last;
}
return idx;
}
/// <summary>
/// Rank population and sort in order of fitness.
/// </summary>
private void RankPopulation()
{
m_totalFitness = 0.0;
foreach (Genome g in m_thisGeneration)
{
g.Fitness = FitnessFunction(g.Genes());
m_totalFitness += g.Fitness;
}
m_thisGeneration.Sort(delegate(Genome x, Genome y)
{ return Comparer<double>.Default.Compare(x.Fitness, y.Fitness); });
// now sorted in order of fitness.
double fitness = 0.0;
m_fitnessTable.Clear();
foreach (Genome t in m_thisGeneration)
{
fitness += t.Fitness;
m_fitnessTable.Add(t.Fitness);
}
}
/// <summary>
///کروموزومهای اولیه را با فراخوانی تابعfitness فراهم می کند.
/// </summary>
private void CreateGenomes()
{
for (int i = 0; i < m_populationSize; i++)
{
Genome g = new Genome(m_genomeSize);
m_thisGeneration.Add(g);
}
}
private void CreateNextGeneration()
{
m_nextGeneration.Clear();
Genome g = null;
if (m_elitism)
g = m_thisGeneration[m_populationSize - 1].DeepCopy();
for (int i = 0; i < m_populationSize; i += 2)
{
int pidx1 = RouletteSelection();
int pidx2 = RouletteSelection();
Genome parent1, parent2, child1, child2;
parent1 = m_thisGeneration[pidx1];
parent2 = m_thisGeneration[pidx2];
if (m_random.NextDouble() < m_crossoverRate)
{
parent1.Crossover(ref parent2, out child1, out child2);
}
else
{
child1 = parent1;
child2 = parent2;
}
child1.Mutate();
child2.Mutate();
m_nextGeneration.Add(child1);
m_nextGeneration.Add(child2);
}
if (m_elitism && g != null)
m_nextGeneration[0] = g;
m_thisGeneration.Clear();
foreach (Genome ge in m_nextGeneration)
m_thisGeneration.Add(ge);
}
private double m_mutationRate;
private double m_crossoverRate;
private int m_populationSize;
private int m_generationSize;
private int m_genomeSize;
private double m_totalFitness;
private string m_strFitness;
private bool m_elitism;
private List<Genome> m_thisGeneration;
private List<Genome> m_nextGeneration;
private List<double> m_fitnessTable;
static Random m_random = new Random();
static private GAFunction getFitness;
public GAFunction FitnessFunction
{
get
{
return getFitness;
}
set
{
getFitness = value;
}
}
// Properties
public int PopulationSize
{
get
{
return m_populationSize;
}
set
{
m_populationSize = value;
}
}
public int Generations
{
get
{
return m_generationSize;
}
set
{
m_generationSize = value;
}
}
public int GenomeSize
{
get
{
return m_genomeSize;
}
set
{
m_genomeSize = value;
}
}
public double CrossoverRate
{
get
{
return m_crossoverRate;
}
set
{
m_crossoverRate = value;
}
}
public double MutationRate
{
get
{
return m_mutationRate;
}
set
{
m_mutationRate = value;
}
}
public string FitnessFile
{
get
{
return m_strFitness;
}
set
{
m_strFitness = value;
}
}
/// <summary>
/// Keep previous generation's fittest individual in place of worst in current
/// </summary>
public bool Elitism
{
get
{
return m_elitism;
}
set
{
m_elitism = value;
}
}
public void GetBest(out double[] values, out double fitness, out List<Genome> allgens)
{
Genome g = m_thisGeneration[m_populationSize - 1];
allgens = m_thisGeneration;
values = new double[g.Length];
g.GetValues(ref values);
fitness = g.Fitness;
}
public void GetWorst(out double[] values, out double fitness)
{
GetNthGenome(0, out values, out fitness);
}
public void GetNthGenome(int n, out double[] values, out double fitness)
{
/// Preconditions
/// -------------
if (n < 0 || n > m_populationSize - 1)
throw new ArgumentOutOfRangeException("n too large, or too small");
/// -------------
Genome g = m_thisGeneration[n];
values = new double[g.Length];
g.GetValues(ref values);
fitness = g.Fitness;
}
}
}