-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpairwise_gcd.cpp
214 lines (168 loc) · 4.42 KB
/
pairwise_gcd.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*
*
* J1K7_7
*
*/
//Ad Infinitum 13 - Math Programming Contest
//https://www.hackerrank.com/contests/infinitum13/challenges/pairwise-gcd
#include <iostream>
#include <sstream>
#include <fstream>
#include <string>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <set>
#include <cstring>
#include <list>
#include <map>
#include <iomanip>
#include <algorithm>
#include <functional>
#include <utility>
#include <bitset>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <cstdio>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef vector<int> vi;
typedef vector<long long> vll;
#define l(x) (x << 1) + 1
#define r(x) (x << 1) + 2
#define mid(l, r) ((l + r) >> 1)
#define mp make_pair
#define pb push_back
#define all(a) a.begin(),a.end()
#define pr(n) printf("%d",n)
#define s(n) scanf("%d",&n)
#define debug(x) {cerr <<#x<<" = " <<x<<"\n"; }
#define debug2(x, y) {cerr <<#x<<" = " <<x<<", "<<#y <<" = " <<y <<"\n";}
#define ss second
#define ff first
#define m0(x) memset(x,0,sizeof(x))
#define snuke(c,itr) for(__typeof((c).begin()) itr=(c).begin();itr!=(c).end();itr++)
const ll mx_ll = numeric_limits<ll> :: max();
const int mx_int = numeric_limits<int> :: max();
const int mod=1234567891;
const long double PI = (long double)(3.1415926535897932384626433832795);
inline bool ispow2(int x){return (x!=0 && (x&(x-1))==0);} //0 or 1
int msb(unsigned x){ union { double a; int b[2]; }; a = x; return (b[1] >> 20) - 1023; }
template<class T>
inline void cinarr(T a, int n){ for (int i=0;i<n;++i) cin >> a[i];}
inline ll powmod(ll a,ll b) {ll res = 1; while(b){if(b&1) res = (res*a)%mod;a = (a*a)%mod;b >>= 1;}return res;}
inline ll gcd(ll a,ll b){ll t;while(b){a=a%b;t=a;a=b;b=t;}return a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
inline int nextint(){ int x; scanf("%d",&x); return x; }
inline ll nextll(){ ll x; scanf("%lld",&x); return x; }
const int maxN = 1e5+7;
int n , m;
ll a[maxN];
ll b[maxN];
// Polynomial evaluation
ll poly_eval ( int deg , ll x )
{
ll ans = 0ll;
for(int i = deg ; i >= 0; i--)
{
ans = (x *ans + b[i] + mod ) % mod;
}
return ans;
}
ll p[maxN];
ll fdiv[maxN];
vector<ll> getDivisors(ll n)
{
set<ll> fcd;
for(ll i = 1; i * i <= n ; i++)
{
if ( n % i == 0 )
{
fcd.insert(i);
fcd.insert(n/i);
}
}
vector<ll> cd;
for(auto x: fcd)
cd.push_back(x);
return cd;
}
ll mobius[maxN];
void mob()
{
mobius[1] = 1;
for (int i = 2; i < maxN; i++)
{
for (int j = 1; j * j <= i; ++j)
{
if (i % j != 0)
continue;
mobius[i] -= mobius[j];
if (i != j * j && j != 1)
mobius[i] -= mobius[i / j];
}
}
}
int main()
{
ios_base::sync_with_stdio(false); cin.tie(0);
n = nextint();
m = nextint();
for(int i = 0; i < n ; i++)
{
a[i] = nextll();
}
for(int i = 0; i <= m ; i++)
{
b[i] = nextll();
}
// O(m*maxN)
// pre-calculating the values of polynomial from 0 to maxN.
for (int i = 0 ; i < maxN; i++)
{
p[i] = poly_eval(m,i);
}
// D(x): number of pairs such that x is Common Divisor
// G(x): number of pairs such that x is GCD
vll t_div;
// O(n * sqrt(n))
for( int i = 0; i < n; i++)
{
t_div.clear();
t_div = getDivisors(a[i]);
for ( auto x : t_div )
{
fdiv[x]++;
}
}
mob();
ll ans = 0ll;
//
// O(maxN*sqrt(maxN))
for(ll i = 0; i < maxN; i++)
{
if ( fdiv[i] < 2 ) continue;
ll pairs = ( fdiv[i] * 1ll * ( fdiv[i] - 1) / 2 ) % mod ;
ll prod = 0ll;
for ( ll j = 1; j * j <= i; j++ )
{
if ( i % j == 0 )
{
prod =( prod + mod + ( p[j] * mobius[i/j] ) ) % mod;
if ( j * j != i )
{
prod =( prod + mod + ( p[i/j] * mobius[j] ) ) % mod;
}
}
}
ans = (ans + mod + prod * pairs ) % mod;
}
cout << ans << "\n";
return 0;
}