forked from AMGarkin/UnPAZ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIceKey.cpp
418 lines (331 loc) · 9.09 KB
/
IceKey.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
/*
* C++ implementation of the ICE encryption algorithm.
*
* Written by Matthew Kwan - July 1996
*/
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*
* The C++ ICE Encryption Class
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*Synopsis
*
* #include <IceKey.H>
*
* IceKey::IceKey (int level)
*
* IceKey::~IceKey ();
*
* void IceKey::set (const unsigned char *key);
*
* void IceKey::encrypt (const unsigned char *plaintext, unsigned char *ciphertext) const;
*
* void IceKey::decrypt (const unsigned char *ciphertext, unsigned char *plaintext) const;
*
* int IceKey::keySize () const;
*
* int IceKey::blockSize () const;
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*Description
*
*The IceKey class is used for encrypting and decrypting 64-bit blocks of data with
*the ICE (Information Concealment Engine) encryption algorithm.
*
*The constructor creates a new IceKey object that can be used to encrypt and decrypt
*data. The level of encryption determines the size of the key, and hence its speed.
*Level 0 uses the Thin-ICE variant, which is an 8-round cipher taking an 8-byte key.
*This is the fastest option, and is generally considered to be at least as secure as
*DES, although it is not yet certain whether it is as secure as its key size.
*
*For levels n greater than zero, a 16n-round cipher is used, taking 8n-byte keys.
*Although not as fast as level 0, these are very very secure.
*
*Before an IceKey can be used to encrypt data, its key schedule must be set with the
*set() member function. The length of the key required is determined by the level,
*as described above.
*
*The member functions encrypt() and decrypt() encrypt and decrypt respectively data
*in blocks of eight chracters, using the specified key.
*
*Two functions keySize() and blockSize() are provided which return the key and block
*size respectively, measured in bytes. The key size is determined by the level, while
*the block size is always 8.
*
*The destructor zeroes out and frees up all memory associated with the key.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
#include "IceKey.h"
/* Structure of a single round subkey */
class IceSubkey {
public:
unsigned long val[3];
};
namespace {
/* The S-boxes */
unsigned long ice_sbox[4][1024];
int ice_sboxes_initialised = 0;
/* Modulo values for the S-boxes */
const int ice_smod[4][4] = {
{333, 313, 505, 369},
{379, 375, 319, 391},
{361, 445, 451, 397},
{397, 425, 395, 505}
};
/* XOR values for the S-boxes */
const int ice_sxor[4][4] = {
{0x83, 0x85, 0x9b, 0xcd},
{0xcc, 0xa7, 0xad, 0x41},
{0x4b, 0x2e, 0xd4, 0x33},
{0xea, 0xcb, 0x2e, 0x04}
};
/* Permutation values for the P-box */
const unsigned long ice_pbox[32] = {
0x00000001, 0x00000080, 0x00000400, 0x00002000,
0x00080000, 0x00200000, 0x01000000, 0x40000000,
0x00000008, 0x00000020, 0x00000100, 0x00004000,
0x00010000, 0x00800000, 0x04000000, 0x20000000,
0x00000004, 0x00000010, 0x00000200, 0x00008000,
0x00020000, 0x00400000, 0x08000000, 0x10000000,
0x00000002, 0x00000040, 0x00000800, 0x00001000,
0x00040000, 0x00100000, 0x02000000, 0x80000000
};
/* The key rotation schedule */
const int ice_keyrot[16] = {
0, 1, 2, 3, 2, 1, 3, 0,
1, 3, 2, 0, 3, 1, 0, 2
};
/*
* 8-bit Galois Field multiplication of a by b, modulo m.
* Just like arithmetic multiplication, except that additions and
* subtractions are replaced by XOR.
*/
unsigned int gf_mult(register unsigned int a, register unsigned int b, register unsigned int m)
{
register unsigned int res = 0;
while (b) {
if (b & 1)
res ^= a;
a <<= 1;
b >>= 1;
if (a >= 256)
a ^= m;
}
return (res);
}
/*
* Galois Field exponentiation.
* Raise the base to the power of 7, modulo m.
*/
unsigned long gf_exp7(register unsigned int b, unsigned int m)
{
register unsigned int x;
if (b == 0)
return (0);
x = gf_mult (b, b, m);
x = gf_mult (b, x, m);
x = gf_mult (x, x, m);
return (gf_mult (b, x, m));
}
/*
* Carry out the ICE 32-bit P-box permutation.
*/
unsigned long ice_perm32(register unsigned long x)
{
register unsigned long res = 0;
register const unsigned long *pbox = ice_pbox;
while (x) {
if (x & 1)
res |= *pbox;
pbox++;
x >>= 1;
}
return (res);
}
/*
* Initialise the ICE S-boxes.
* This only has to be done once.
*/
void ice_sboxes_init()
{
register int i;
for (i = 0; i < 1024; i++) {
int col = (i >> 1) & 0xff;
int row = (i & 0x1) | ((i & 0x200) >> 8);
unsigned long x;
x = gf_exp7 (col ^ ice_sxor[0][row], ice_smod[0][row]) << 24;
ice_sbox[0][i] = ice_perm32 (x);
x = gf_exp7 (col ^ ice_sxor[1][row], ice_smod[1][row]) << 16;
ice_sbox[1][i] = ice_perm32 (x);
x = gf_exp7 (col ^ ice_sxor[2][row], ice_smod[2][row]) << 8;
ice_sbox[2][i] = ice_perm32 (x);
x = gf_exp7 (col ^ ice_sxor[3][row], ice_smod[3][row]);
ice_sbox[3][i] = ice_perm32 (x);
}
}
}
/*
* Create a new ICE key.
*/
IceKey::IceKey(int n)
{
if (!ice_sboxes_initialised) {
ice_sboxes_init ();
ice_sboxes_initialised = 1;
}
if (n < 1) {
_size = 1;
_rounds = 8;
} else {
_size = n;
_rounds = n * 16;
}
_keysched = new IceSubkey[_rounds];
}
/*
* Destroy an ICE key.
*/
IceKey::~IceKey()
{
int i, j;
for (i = 0; i < _rounds; i++)
for (j = 0; j < 3; j++)
_keysched[i].val[j] = 0;
_rounds = _size = 0;
delete[] _keysched;
}
/*
* The single round ICE f function.
*/
namespace {
unsigned long ice_f(register unsigned long p, const IceSubkey *sk)
{
unsigned long tl, tr; /* Expanded 40-bit values */
unsigned long al, ar; /* Salted expanded 40-bit values */
/* Left half expansion */
tl = ((p >> 16) & 0x3ff) | (((p >> 14) | (p << 18)) & 0xffc00);
/* Right half expansion */
tr = (p & 0x3ff) | ((p << 2) & 0xffc00);
/* Perform the salt permutation */
// al = (tr & sk->val[2]) | (tl & ~sk->val[2]);
// ar = (tl & sk->val[2]) | (tr & ~sk->val[2]);
al = sk->val[2] & (tl ^ tr);
ar = al ^ tr;
al ^= tl;
al ^= sk->val[0]; /* XOR with the subkey */
ar ^= sk->val[1];
/* S-box lookup and permutation */
return (ice_sbox[0][al >> 10] | ice_sbox[1][al & 0x3ff] | ice_sbox[2][ar >> 10] | ice_sbox[3][ar & 0x3ff]);
}
}
/*
* Encrypt a block of 8 bytes of data with the given ICE key.
*/
void IceKey::encrypt(const unsigned char *ptext, unsigned char *ctext) const
{
register int i;
register unsigned long l, r;
l = (((unsigned long) ptext[0]) << 24)
| (((unsigned long) ptext[1]) << 16)
| (((unsigned long) ptext[2]) << 8)
| ptext[3];
r = (((unsigned long) ptext[4]) << 24)
| (((unsigned long) ptext[5]) << 16)
| (((unsigned long) ptext[6]) << 8)
| ptext[7];
for (i = 0; i < _rounds; i += 2) {
l ^= ice_f (r, &_keysched[i]);
r ^= ice_f (l, &_keysched[i + 1]);
}
for (i = 0; i < 4; i++) {
ctext[3 - i] = r & 0xff;
ctext[7 - i] = l & 0xff;
r >>= 8;
l >>= 8;
}
}
/*
* Decrypt a block of 8 bytes of data with the given ICE key.
*/
void IceKey::decrypt(const unsigned char *ctext, unsigned char *ptext) const
{
register int i;
register unsigned long l, r;
l = (((unsigned long) ctext[0]) << 24)
| (((unsigned long) ctext[1]) << 16)
| (((unsigned long) ctext[2]) << 8)
| ctext[3];
r = (((unsigned long) ctext[4]) << 24)
| (((unsigned long) ctext[5]) << 16)
| (((unsigned long) ctext[6]) << 8)
| ctext[7];
for (i = _rounds - 1; i > 0; i -= 2) {
l ^= ice_f (r, &_keysched[i]);
r ^= ice_f (l, &_keysched[i - 1]);
}
for (i = 0; i < 4; i++) {
ptext[3 - i] = r & 0xff;
ptext[7 - i] = l & 0xff;
r >>= 8;
l >>= 8;
}
}
/*
* Set 8 rounds [n, n+7] of the key schedule of an ICE key.
*/
void IceKey::scheduleBuild (unsigned short *kb, int n, const int *keyrot)
{
int i;
for (i = 0; i < 8; i++) {
register int j;
register int kr = keyrot[i];
IceSubkey *isk = &_keysched[n + i];
for (j = 0; j < 3; j++)
isk->val[j] = 0;
for (j = 0; j < 15; j++) {
register int k;
unsigned long *curr_sk = &isk->val[j % 3];
for (k = 0; k < 4; k++) {
unsigned short *curr_kb = &kb[(kr + k) & 3];
register int bit = *curr_kb & 1;
*curr_sk = (*curr_sk << 1) | bit;
*curr_kb = (*curr_kb >> 1) | ((bit ^ 1) << 15);
}
}
}
}
/*
* Set the key schedule of an ICE key.
*/
void IceKey::set (const unsigned char *key)
{
int i;
if (_rounds == 8) {
unsigned short kb[4];
for (i = 0; i < 4; i++)
kb[3 - i] = (key[i * 2] << 8) | key[i * 2 + 1];
scheduleBuild (kb, 0, ice_keyrot);
return;
}
for (i = 0; i < _size; i++) {
int j;
unsigned short kb[4];
for (j = 0; j < 4; j++)
kb[3 - j] = (key[i * 8 + j * 2] << 8) | key[i * 8 + j * 2 + 1];
scheduleBuild (kb, i * 8, ice_keyrot);
scheduleBuild (kb, _rounds - 8 - i * 8, &ice_keyrot[8]);
}
}
/*
* Return the key size, in bytes.
*/
int IceKey::keySize () const
{
return (_size * 8);
}
/*
* Return the block size, in bytes.
*/
int IceKey::blockSize () const
{
return (8);
}