-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_ASPRO_NGS_Strehl.py
278 lines (215 loc) · 10.5 KB
/
test_ASPRO_NGS_Strehl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#####################################################################
# 'test_ASPRO_NGS_Strehl.py'
#
# Created: 2023.10 (yyyy.mm)
# Author: Laurent Bourgès (JMMC - OSUG, CNRS)
# License: GPL3 (see LICENSE)
#
#####################################################################
import ASPRO_NGS.aspro as aspro
import numpy as np
import matplotlib.pyplot as plt
trace = True
config_turbulence = {}
def setConfigTurbulence(seeing, tau0, h0):
config_turbulence['seeing'] = seeing
config_turbulence['tau0'] = tau0 # (ms)
config_turbulence['h_0'] = h0 # Altitude of the turbulent layers (m) (could be a list) (for isoplanetism)
config_turbulence['Cn2'] = 1.0 # Cn2 weight (could be a list) (for collapsing h_0 and v_0 to an equivalent individual layer)
# seeing as gives r0:
# Fried's parameter @500 nm (m):
config_turbulence['r_0'] = (1.028993 * (0.5e-6 / config_turbulence['seeing']) / np.pi * (180.0 * 3600.0)) # m
# tau0 (+r0) gives v0:
# # Wind speed of the turbulence layers (m.s-1) (could be a list) (for isoplanetism)
# unused by strehl_iso:
config_turbulence['v_0'] = (1000.0 * config_turbulence['r_0'] / config_turbulence['tau0']) # (m.s-1)
# Derive seeing & tau0:
config_turbulence['seeing'] = (1.028993 * (0.5e-6 / config_turbulence['r_0']) / np.pi * (180.0 * 3600.0)) # as
config_turbulence['tau0'] = (1000.0 * config_turbulence['r_0'] / config_turbulence['v_0']) # (ms)
if trace:
print("setConfigTurbulence:")
print(f"- seeing: {config_turbulence['seeing']:.2f} as")
print(f"- h0: {config_turbulence['h_0']:.3f} m")
print(f"- r0: {100.0 * config_turbulence['r_0']:.2f} cm")
print(f"- tau0: {config_turbulence['tau0']:.2f} ms")
print(f"- v0: {config_turbulence['v_0']:.3f} m.s-1")
def computeStrehl_UT_NGS(flag_mode, target_ao_mag, distance_ao_as, iso=False):
##### User parameters #####
# Mode to simulate
# flag_mode = 'NGS_IR' or ''NGS_VIS'
if flag_mode[4:7] != "VIS" and flag_mode[4:7] != "IR":
raise ValueError(flag_mode + " -> Unknown mode (*_VIS / *_IR)")
# NGS
config_NGS = {}
config_NGS['magnitude'] = target_ao_mag # Magnitude of the NGS
config_NGS['zenith'] = 0.0 # For the airmass (deg), 0.0 for zenith
# Target
config_target = {}
config_target['wavelength'] = 2.2e-06 # Wavelength of the target (science or fringe tracker) channel (m)
config_target['theta'] = distance_ao_as # Angle between the target (science or fringe tracker) and the NGS (arcsecond)
# AO system
config_ao = {}
config_ao['TelescopeDiameter'] = 8.0 # Telescope diameter (m)
config_ao['transmission'] = 0.3 # Global transmission of the WFS channel (to compute the number of photons)
config_ao['sig_RON'] = 0.2 # Readout noise of the camera
config_ao['ExcessNoiseFactor'] = 2 # Excess noise factor
config_ao['g_loop'] = 0.5 # Loop gain
##### User parameters #####
##### Mode-dependent variables #####
# config_NGS['wavelength'] -> Wavelength of the HO NGS channel (m)
# config_NGS['mag2flux'] -> Convertion magnitude to flux / Magnitude 0-point (ph/s/m2 for mag=0)
# config_ao['n_mode'] -> Number of corrected modes corrected models (to compute the equivalent DM number of actuators)
# config_ao['f_loop'] -> Loop frequency (Hz)
# config_ao['SH_diam'] -> SH-WFS diameter (number of lenslets)
# config_ao['pixScale'] -> pixel scale (milliarcsecond / pixel)
# config_ao['n_pix'] -> number of pixels per lenslet
if flag_mode[4:7] == "VIS":
config_NGS["wavelength"] = 750e-9
config_NGS["mag2flux"] = 2.63e10
config_ao["n_mode"] = 800
config_ao["f_loop"] = 1000.0
config_ao["SH_diam"] = 40
config_ao["pixScale"] = 420
config_ao["n_pix"] = 6
elif flag_mode[4:7] == "IR":
config_NGS["wavelength"] = 2.2e-6
config_NGS["mag2flux"] = 1.66e9
config_ao["n_mode"] = 44
config_ao["f_loop"] = 500.0
config_ao["SH_diam"] = 9
config_ao["pixScale"] = 510
config_ao["n_pix"] = 8
##### Mode-dependent variables #####
##### Calibration of the Maréchal approximation #####
# Values obtained with TIPTOP
config_Strehl = {}
if flag_mode[4:7] == "VIS":
config_Strehl["geom"] = [0.26705087, 0.98968173]
config_Strehl["lag"] = [8.48317135, 2.15500641]
config_Strehl["ph"] = [11.97305155]
config_Strehl["ron"] = [0.51996901]
config_Strehl["iso"] = [4.33657467, 1.86425362]
elif flag_mode[4:7] == "IR":
config_Strehl["geom"] = [0.24405723, 0.86477159]
config_Strehl["lag"] = [2.08400088, 2.09918214]
config_Strehl["ph"] = [15.17856885]
config_Strehl["ron"] = [1.65331745]
config_Strehl["iso"] = [1.74957095, 1.97261581]
##### Calibration of the Maréchal approximation #####
# Running Maréchal approximation (Anthony Berdeu, LESIA, OBSPM)
# return aspro.compute_Marechal_NGS(config_NGS, config_target, config_ao, config_turbulence, config_Strehl)
##### Computing individual Strehl contributions #####
##### Loading configuration #####
# Loading atmosphere
r_0 = config_turbulence['r_0']
Cn2 = config_turbulence['Cn2']
h_0 = config_turbulence['h_0']
h_0 = (np.sum(Cn2 * np.power(h_0, 5.0 / 3.0)) / np.sum(Cn2))**(3.0 / 5.0)
v_0 = config_turbulence['v_0']
v_0 = (np.sum(Cn2 * np.power(np.abs(v_0), 5.0 / 3.0)) / np.sum(Cn2))**(3.0 / 5.0)
# Loading AO system
ExcessNoiseFactor = config_ao['ExcessNoiseFactor']
sigRON = config_ao['sig_RON']
pixScale = config_ao['pixScale'] / 1000.0 # arcsecond
[eqDM_pitch, eqDMn_act] = aspro.modes2eqDM(config_ao)
f_loop = config_ao['f_loop']
g_loop = config_ao['g_loop']
n_pix = config_ao['n_pix']
D_WFS = config_ao['TelescopeDiameter'] / config_ao['SH_diam']
# Loading NGS
wavelength_NGS = config_NGS['wavelength']
n_ph = config_ao['transmission'] * D_WFS**2 * \
config_NGS['mag2flux'] * 10.0**(-config_NGS['magnitude'] / 2.5) / f_loop
zenith_angle = config_NGS['zenith']
airmass = 1.0 / np.cos(np.radians(zenith_angle))
# Loading target
wavelength_target = config_target['wavelength']
theta = config_target['theta']
# Loading Strehl damping coefficient
coeff_geom = config_Strehl['geom']
coeff_lag = config_Strehl['lag']
coeff_ph = config_Strehl['ph']
coeff_ron = config_Strehl['ron']
coeff_iso = config_Strehl['iso']
##### Loading configuration #####
if iso:
# print(f"Strehl_iso: coeff_iso={coeff_iso} airmass={airmass} theta={theta} h_0={h_0} r_0={r_0} wavelength={wavelength_target}")
return aspro.Strehl_iso(coeff_iso, airmass, theta, h_0, r_0, wavelength_target)
##### Computing individual Strehl contributions #####
SR_geom = aspro.Strehl_geom(coeff_geom, airmass, eqDM_pitch, r_0, wavelength_target)
SR_lag = aspro.Strehl_lag(coeff_lag, airmass, v_0, r_0, wavelength_target, f_loop, g_loop)
SR_ph = aspro.Strehl_ph(coeff_ph, n_ph, wavelength_target, wavelength_NGS, g_loop, ExcessNoiseFactor)
SR_ron = aspro.Strehl_ron(coeff_ron, sigRON, n_ph, pixScale, n_pix, g_loop)
SR_iso = aspro.Strehl_iso(coeff_iso, airmass, theta, h_0, r_0, wavelength_target)
##### Computing individual Strehl contributions #####
# print(f"SR_geom: {SR_geom}")
# print(f"SR_lag: {SR_lag}")
# print(f"SR_ph: {SR_ph}")
# print(f"SR_ron: {SR_ron}")
# print(f"SR_iso: {SR_iso}")
##### Output #####
SR = SR_geom * SR_lag * SR_ph * SR_ron * SR_iso
return SR
##### Output #####
def plotStrehlIso(flag_mode):
ao_Rmag = 5.0
plt.figure(figsize=(20, 10))
dists_AO = np.arange(0.0, 30.0, 0.2, dtype=float)
for i in range(len(seeing_values)):
seeing = seeing_values[i]
setConfigTurbulence(seeing, tau0_values[i], ho_values[i])
sr_iso = np.zeros_like(dists_AO)
print("distance_ao_as\tstrehl_ratio")
for i in range(len(dists_AO)):
distance_ao_as = dists_AO[i] # as
sr_iso[i] = computeStrehl_UT_NGS(flag_mode, ao_Rmag, distance_ao_as, True)
print(f"{distance_ao_as:.2f}\t{sr_iso[i]:.4e}")
plt.plot(dists_AO, sr_iso, marker='o', label=f"seeing: {seeing:.2f}")
plt.xlabel('dist (as)')
plt.ylabel('SR_iso')
plt.ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
plt.grid(True)
plt.legend()
plt.show()
def plotStrehlMag(flag_mode):
plt.figure(figsize=(20, 10))
distance_ao_as = 0.0
mags_AO = np.arange(0.0, 20.0, 0.25, dtype=float)
for i in range(len(seeing_values)):
seeing = seeing_values[i]
setConfigTurbulence(seeing, tau0_values[i], ho_values[i])
sr = np.zeros_like(mags_AO)
print("ao_mag\tstrehl_ratio")
for i in range(len(mags_AO)):
ao_mag = mags_AO[i] # as
sr[i] = computeStrehl_UT_NGS(flag_mode, ao_mag, distance_ao_as, False)
print(f"{ao_mag:.2f}\t{sr[i]:.4e}")
plt.plot(mags_AO, sr, marker='o', label=f"seeing: {seeing:.2f}")
plt.xlabel('AO mag')
plt.ylabel('SR_GPAO')
plt.ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
plt.grid(True)
plt.legend()
plt.show()
# --- main ---
if __name__ == "__main__":
flag_mode = "NGS_VIS"
# Using ESO turbulence categories:
# - GRAVITY: https://www.eso.org/sci/observing/phase2/ObsConditions.GRAVITY.html
# More specifically, the categories are:
# T < 10%, corresponding to seeing ≤ 0.60“ and τ0 > 5.2ms
# T < 20%, corresponding to seeing ≤ 0.70“ and τ0 > 4.4ms
# T < 30%, corresponding to seeing ≤ 0.80“ and τ0 > 4.1ms
# T < 50%, corresponding to seeing ≤ 1.00“ and τ0 > 3.2ms
# T < 70%, corresponding to seeing ≤ 1.15“ and τ0 > 2.2ms
# T < 85%, corresponding to seeing ≤ 1.40“ and τ0 > 1.6ms
# For conditions worse than T = 85%, no GRAVITY operations are possible
seeing_values = np.array([0.60, 0.70, 0.80, 1.00, 1.15, 1.40])
tau0_values = np.array([5.2, 4.4, 4.1, 3.2, 2.2, 1.6])
# from http://archive.eso.org/wdb/wdb/asm/mass_paranal/form:
# Median $8 * $10 = median (MASS Turb Altitude [m] * MASS-DIMM Cn2 fraction at ground)
ho_values = np.array([5850.0, 5250.0, 4650.0, 3700.0, 3200.0, 2700.0])
plotStrehlIso(flag_mode)
plotStrehlMag(flag_mode)
plotStrehlMag("NGS_IR")
print("That's All, folks !'")