-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_mnist.py
169 lines (139 loc) · 5.39 KB
/
train_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""
Train MNIST
"""
import torch
from torchvision.datasets import mnist
from torchvision import transforms
from torch.utils.data import DataLoader
from ep_mlp import EPMLP
from fp_solver import FixedStepSolver
from tensorboardX import SummaryWriter
from time import time
# ARGS
BATCH_SIZE = 128
HIDDEN_SIZES = [500]
STEP_SIZE = 0.5
MAX_STEPS = 50
LR = 0.01
LOGGING_STEPS = 5
DEVICE = 'cuda'
EPOCHS = 35
# GLOBAL stuff
WRITER = SummaryWriter('./logs')
class RunningAvg:
def __init__(self):
self.sum = 0
self.count = 0
def reset(self):
self.sum = 0
self.count = 0
def record(self, val, num):
self.sum += val * num
self.count += num
def get_avg(self):
return self.sum / self.count if self.count > 0 else 0.
class OneHot(object):
def __init__(self, num_class):
self.num_class = num_class
def __call__(self, label):
oh_vec = torch.Tensor(self.num_class).zero_()
oh_vec[label] = 1.
return oh_vec
def get_data_loaders():
img_transform = transforms.Compose([transforms.ToTensor(),
transforms.Lambda(lambda x: x.view(-1))])
train_dset = mnist.MNIST(root='./mnist_data', train=True,
download=True,
transform=img_transform,
target_transform=OneHot(10))
val_dset = mnist.MNIST(root='./mnist_data', train=False,
download=True,
transform=img_transform,
target_transform=OneHot(10))
train_loader = DataLoader(train_dset, batch_size=BATCH_SIZE,
shuffle=True)
val_loader = DataLoader(val_dset, batch_size=BATCH_SIZE,
shuffle=False)
return train_loader, val_loader
def get_model():
model = EPMLP(784, 10, HIDDEN_SIZES, device=torch.device(DEVICE))
solver = FixedStepSolver(step_size=STEP_SIZE, max_steps=MAX_STEPS)
return model, solver
def get_opt(model):
opt = torch.optim.SGD(model.parameters(), lr=LR)
return opt
def get_avg_cost_and_corrects(free_states, labels, model):
avg_costs = torch.mean(model.get_cost(free_states, labels))
out = free_states[-1]
preds = out.max(1)[1]
trus = labels.max(1)[1]
avg_corrects = (preds == trus).float().mean()
return avg_costs.item(), avg_corrects.item()
def train(solver, model, opt, dataloader, global_step):
acc_stats = RunningAvg()
cost_stats = RunningAvg()
device = model.device
for imgs, labels in dataloader:
imgs = imgs.to(device=device)
labels = labels.to(device=device)
start = time()
free_states = model.free_phase(imgs, solver)
clamp_states = model.clamp_phase(imgs, labels, solver, 1,
out=free_states[-1],
hidden_units=free_states[:-1])
fp_time = time() - start
opt.zero_grad()
start = time()
model.set_gradients(imgs, free_states, clamp_states)
grad_time = time() - start
opt.step()
global_step += 1
# Record stats and report
with torch.no_grad():
avg_cost, avg_corrects = get_avg_cost_and_corrects(free_states, labels, model)
acc_stats.record(avg_corrects, imgs.size(0))
cost_stats.record(avg_cost, imgs.size(0))
if global_step % LOGGING_STEPS == 0:
print('At step {}, cost: {:.4f}, acc: {:.2f}, '
'fp time: {:.3f}, grad time: {:.3f}'.format(global_step,
cost_stats.get_avg(),
acc_stats.get_avg() * 100, fp_time, grad_time))
WRITER.add_scalar('train/cost', cost_stats.get_avg(), global_step=global_step)
WRITER.add_scalar('train/acc', acc_stats.get_avg() * 100, global_step=global_step)
acc_stats.reset()
cost_stats.reset()
return global_step
def validate(solver, model, dataloader, global_step):
acc_stats = RunningAvg()
cost_stats = RunningAvg()
device = model.device
for imgs, labels in dataloader:
imgs = imgs.to(device)
labels = labels.to(device)
free_states = model.free_phase(imgs, solver)
# Record stats and report
with torch.no_grad():
avg_cost, avg_corrects = get_avg_cost_and_corrects(free_states, labels, model)
acc_stats.record(avg_corrects, imgs.size(0))
cost_stats.record(avg_cost, imgs.size(0))
print('At step {}, '
'validation cost: {:.4f}, '
'validation acc: {:.2f}'.format(global_step,
cost_stats.get_avg(),
acc_stats.get_avg() * 100))
WRITER.add_scalar('valid/cost', cost_stats.get_avg(), global_step=global_step)
WRITER.add_scalar('valid/acc', acc_stats.get_avg() * 100, global_step=global_step)
def main():
train_loader, val_loader = get_data_loaders()
model, solver = get_model()
opt = get_opt(model)
print('Train on {}'.format(model.device))
global_step = 0
epoch = 0
while epoch < EPOCHS:
global_step = train(solver, model, opt, train_loader, global_step)
validate(solver, model, val_loader, global_step)
epoch += 1
if __name__ == '__main__':
""" Main loop """
main()