-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
298 lines (298 loc) · 10 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
install . packages (" Rcmdr ")
install . packages ("Rcmdr")
install.packages ("Rcmdr")
sessionInfo()
library(Rcmdr)
data()
install.packages(rmarkdown)
install.packages("rmarkdown")
library(rmarkdown)
installed.packages()
apply(iris[,1:4],2,min)
colnames(iris)
3*c(1,2,3)
subset(iris, Species == "setosa")
altura<-(c(151,150,162,163,178,179,182,183,190,200,171,172,173,172,172,170,165,143))
altura[altura<170]
n <- 5
runif(n) + n
runif(n) + n
help(runif)
iris$Species.
class(iris$Species)
labels(iris$Species)
names(iris$Species)
levels(iris$Species)
head(altura)
age <- c(25, 26, 29, 30, 33, 45, 23)
sol <- boxplot.stats(age)
sol
sol$stats
sol$n
sol$out
sol$conf
df <- data.frame(x=c(1,2,3,4),y=c(5,6,7,8))
df[df$x < 3,]
df$x[df$y < 3]
df$y[df$x < 3]
vectordeprueba<-c(1,2,3,4,5,6,7,8,9,10,11,12)
vectordeprueba[-c(10,11)]<-vector2
vectordeprueba[-c(10,11)]
vectordeprueba[c(0:8,11:(length(vec)-1))]
vectordeprueba[c(0:8,11:(length(vectordeprueba)-1))]
vectordeprueba[c(10,11)]
slices <- c(10, 12,4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France")
pie(slices, labels = lbls, main="Pie Chart of Countries")
set.seed(1)sample(1:30, 5, replace=TRUE)
set.seed(1)
sample(1:30, 5, replace=TRUE)
sample(1:30, 5, replace=TRUE)
sample(1:30, 5, replace=TRUE)
sample(1:30, 5, replace=TRUE)
sample(1:30, 5, replace=TRUE)
sample(1:30, 5, replace=TRUE)
sample(1:30, 5, replace=FALSE)
sample(1:30, 10, replace=TRUE)
ing<-c(1560,1578,1679,1800,1200,1234,1189,1456,1395,1502)
which(ing > 1500)
ing[which> 1500]
ing[which(ing > 1500)]
estudios <- c("Alto", "Bajo", "Medio", "Bajo", "Medio")
ingresos <- c("Bajo", "Bajo", "Medio", "Bajo", "Alto")
table(ds$estudios, ds$ingresos)
ds<-estudios, ingresos
ds<-estudios+ingresos
ds=data.frame(estudios,ingresos)
table(ds$estudios, ds$ingresos)
quantile(1:10,0.5)
edad <- c(25,7)
if(edad < 18, "Menor", "Adulto")
ifthenelse(edad < 18, "Menor", "Adulto")
ifelse(edad < 18, "Menor", "Adulto")
edad
edadtexto<-ifelse(edad < 18, "Menor", "Adulto")
edadtexto
z <- c(1:8)
(ii <- order(x <- c(2,1,3,6:2), y <- c(3,4,5,7,4:1)))
cbind(x, y, z)[ii,]
levels(ing)[levels(ing)=="Elevado"] <- "Alto"
ing
head(levels)
names(ing)
head(ing)
ingresos
levels(ingresos)[levels(ing)=="Elevado"]<-"Alto"
ingresos
levels(ingresos)[levels(ingresos)=="Alto"] <- "Elevado"
ingresos
ingresos <- c("Elevado", "Bajo", "Medio", "Bajo", "Medio","Elevado","Bajo","Bajo")
levels(ingresos)[levels(ingresos)=="Alto"] <- "Elevado"
ingresos
levels(ingresos)[levels(ing)=="Elevado"]<-"Alto"
levels(ingresos)[levels(ingresos)=="Elevado"] <- "Alto"
ingresos
levels(ingresos)[levels(ingresos)=="Elevado"] <- "Alto"
levels(ingresos)
ingresos
levels(ingresos)[levels(ingresos)=="Alto"] <- "Elevado"
ingresos
Y <- c(rep("A",50),rep("B",30),rep("C",20))
aux <- sample.split(Y, SplitRatio = 3/4)
Y[aux]
Y[!aux]
install.packages(catools)
install.packages(caTools)
install.packages("caTools")
install.packages(rtools)
install.packages(r)
R --version
R<-version
version
install.packages(caTools)
install.packages("caTools")
version
install.packages("caTools")
install.packages("installr")
install.packages("caTools")
install.packages("caTools")
install.packages(c("backports", "BH", "caret", "cli", "curl", "data.table", "digest", "dplyr", "e1071", "fansi", "foreach", "forecast", "fracdiff", "ggcorrplot", "ggplot2", "glue", "gower", "Hmisc", "ipred", "iterators", "lava", "lfl", "lubridate", "mnormt", "ModelMetrics", "nloptr", "numDeriv", "pillar", "pkgconfig", "plyr", "prodlim", "psych", "purrr", "quadprog", "quantmod", "quantreg", "R6", "Rcpp", "RcppArmadillo", "RCurl", "recipes", "scales", "SQUAREM", "stringi", "survey", "tibble", "tidyr", "tidyselect", "tinytex", "TTR", "xts", "zoo"))
install.packages("caTools")
install.packages("caTools")
version
install.packages("installr")
library(installr)
updateR()
version
install.packages("installr")
library(installr)
updateR()
install.packages("installr")
install.packages("caTools")
install.packages("caTools")
version
version
install.packages("caTools")
library(caTools)
Y <- c(rep("A",50),rep("B",30),rep("C",20))
aux <- sample.split(Y, SplitRatio = 3/4)
Y[aux]
Y[!aux]
group<-c("tratamiento","tratamiento","control","tratamiento","control","tratamiento","control")
death<-c(23,12,4,5,10,9,7)
ds<-data.frame(group,death)
tapply(dt$group, dt$death, max)
tapply(dt$death, dt$group, max)
apply(dt$death, dt$group, max)
tapply(death, group, max)
install.packages("DMwR")
library(DMwR)
lofactor
Sys.getlocale()
Sys.setlocale("LC_ALL","en_US.UTF-8")
Sys.getlocale()
Sys.setlocale("LC_MESSAGES", 'en_GB.UTF-8')
Sys.setenv(LANG = "en_US.UTF-8")
install.packages("unmarked")
if(!is.installed("sampling"))
install.packages("sampling")
??is.installed
# instalación de paquetes
packages <- c("sampling")
install.packages(setdiff(packages,rownames(installed.packages())))
library(sampling)
??sampling
datos <- data("belgianmunicipalities")
class(datos)
nrow(datos)
datos <- belgianmunicipalities
rm(ls("belgianmunicipalities"))
rm(ls(belgianmunicipalities))
rm(belgianmunicipalities)
nrow(datos)
ncol(datos)
dim(datos)
names(datos)
View(datos)
table(datos$Province)
table(datos$Commune)
summary(datos)
describe(datos)
# instalación de paquetes
packages <- c("Hmisc","sampling")
install.packages(setdiff(packages,rownames(installed.packages())))
library(Hmisc)
describe(datos)
str(datos)
table(datos$Province)
# instalación de paquetes
packages <- c("dplyr","Hmisc","sampling")
install.packages(setdiff(packages,rownames(installed.packages())))
library(dplyr)
datos %>% select(Province) %>% summarise(n())
datos %>% group_by(Province) %>% summarise(n())
datos %>% group_by(Province) %>% summarise(n= n()) %>% mutate(N=cumsum(n))
datos %>% group_by(Province) %>% summarise(n= n()) %>%
mutate(N=cumsum(n),f=n/N)
datos %>% group_by(Province) %>% summarise(n= n()) %>%
mutate(N=cumsum(n),f=n/slice_max(N,1))
datos %>% group_by(Province) %>% summarise(n= n()) %>%
mutate(N=cumsum(n),f=n/tail(N,1))
datos %>% group_by(Province) %>% summarise(n= n()) %>%
mutate(N=cumsum(n),f=n/tail(N,1),F=cumsum(f))
barplot(table(datos$Province),ylab = "Frecuencias absolutas",
main = "Diagrama de barras de Provincia")
freqtab <- datos %>% group_by(Province) %>% summarise(n= n()) %>%
mutate(N=cumsum(n),f=n/tail(N,1),F=cumsum(f))
barplot(freqtab$n,ylab = "Frecuencias absolutas",
main = "Diagrama de barras de Provincia")
barplot(freqtab$n,ylab = "Frecuencias absolutas",
main = "Diagrama de barras de Provincia")
barplot(freqtab$n,ylab = "Frecuencias absolutas",
main = "Diagrama de barras de Provincia",names.arg = freqtab$Province)
barplot(freqtab$f,ylab = "Frecuencias relativas",
main = "Diagrama de barras de Provincia",names.arg = freqtab$Province)
freqtab
barplot(freqtab$n,ylab = "Frecuencias absolutas", ylim = c(0,115)
main = "Diagrama de barras de Provincia",names.arg = freqtab$Province)
barplot(freqtab$n,ylab = "Frecuencias absolutas", ylim = c(0,115),
main = "Diagrama de barras de Provincia",names.arg = freqtab$Province)
barplot(freqtab$n,ylab = "Frecuencias absolutas", ylim = c(0,120),
main = "Diagrama de barras de Provincia",names.arg = freqtab$Province)
barplot(freqtab$f,ylab = "Frecuencias relativas", ylim = c(0,1),
main = "Diagrama de barras de Provincia",names.arg = freqtab$Province)
barplot(freqtab$f,ylab = "Frecuencias relativas", ylim = c(0,0.2),
main = "Diagrama de barras de Provincia",names.arg = freqtab$Province)
plot(freqtab$n,type = "l",main="Poligono de frencuencias absolutas de Provincia",ylab = "Frecuencias absolutas")
plot(freqtab$f,type = "l",main="Poligono de frencuencias relativas de Provincia",ylab = "Frecuencias relativas")
dotchart(freqtab$f,labels = freqtab$Province, main = "Gráfico de puntos de Provincia")
plot(freqtab$f,type = "l",main="Poligono de frencuencias relativas de Provincia",ylab = "Frecuencias relativas")
pie(freqtab$n,col = rainbow(9), main = "Gráfico de tarta de Provincia")
stem(datos$medianincome)
?stem
stem(islands)
islands
hist(datos$medianincome,main="Histograma de Ingreso Mediano",col = terrain.colors(8))
hist(datos$medianincome,xlab = "Ingreso Mediano",main="Histograma de Ingreso Mediano",col = terrain.colors(8))
View(datos)
freqtab <- datos %>% group_by(Commune) %>% summarise(n= n()) %>%
mutate(N=cumsum(n),f=n/tail(N,1),F=cumsum(f))
freqtab
# instalación de paquetes
packages <- c("dplyr","ggplot2","Hmisc","sampling")
install.packages(setdiff(packages,rownames(installed.packages())))
library(ggplot2)
?belgianmunicipalities
ggplot(data = datos, aes(x=Province,y=medianincome)) +
geom_bar(stat = "identity", width = 0.5)
ggplot(data = datos, aes(x=Province,y=medianincome)) +
geom_bar(stat = "identity", color="blue",fill="steelblue")
ggplot(data = datos, aes(x=Province,y=medianincome)) +
geom_bar(stat = "identity", fill="steelblue")
update.packages("rlang")
?update.packages
library(devtools)
install.packages("devtools")
devtools::check()
install.packages("pROC")
library(pROC)
data(aSAH)
roc.s100b <- roc(aSAH$outcome, aSAH$s100b)
plot(roc.s100b)
plot(smooth(roc.s100b), add=TRUE, col="blue")
legend("bottomright", legend=c("Empirical", "Smoothed"),
col=c(par("fg"), "blue"), lwd=2)
setwd("~/GitHub/CDR")
data("med_limit")
install.packages("readxl")
library("readxl")
?readxl::read_xlsx
IPC <- readxl::read_xlsx(here::here("data-raw/IPC.xlsx"))
View(IPC)
summary(IPC)
colnames(IPC) <- "ipc"
View(IPC)
IPC <- readxl::read_xlsx(here::here("data-raw/IPC.xlsx"))
colnames(IPC) <- "ipc"
usethis::use_data(IPC, overwrite = TRUE)
devtools::document()
?read.delim
TIC2021 <- read.delim(here::here("data-raw/TIC2021.txt"),header = TRUE)
View(TIC2021)
TIC2021 <- read.delim(here::here("data-raw/TIC2021.txt"),header = TRUE,sep = " ")
View(TIC2021)
TIC2021 <- read.delim(here::here("data-raw/TIC2021.txt"),header = TRUE)
View(TIC2021)
TIC2021 <- read.delim(here::here("data-raw/TIC2021.txt"),header = TRUE)
View(TIC2021)
TIC2021 <- read.delim(here::here("data-raw/TIC2021.txt"),header = TRUE)
View(TIC2021)
TIC2021 <- read.delim(here::here("data-raw/TIC2021.txt"),header = TRUE)
rownames(TIC2021) <- TIC2021$X
TIC2021 <- TIC2021[,-1]
View(TIC2021)
TIC2021 <- read.delim(here::here("data-raw/TIC2021.txt"),header = TRUE)
rownames(TIC2021) <- TIC2021$X
TIC2021 <- TIC2021[,-1]
usethis::use_data(TIC2021, overwrite = TRUE)
devtools::document()