-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathgenerate.py
251 lines (222 loc) · 10 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import gc
import json
import logging
import os
import shutil
import socket
import traceback
from pathlib import Path
import numpy as np
import torch
from tqdm import tqdm
from internlm.accelerator import get_accelerator
from internlm.apis.inference import SequenceGenerator
from internlm.core.context import global_context as gpc
from internlm.data import build_generation_loader_with_data_type
from internlm.initialize import initialize_distributed_env
from internlm.monitor import initialize_monitor_manager
from internlm.monitor.monitor import monitor_manager as mm
from internlm.train import initialize_model, initialize_parallel_communicator
from internlm.utils.common import (
enable_pytorch_expandable_segments,
launch_time,
parse_args,
)
from internlm.utils.gputest import empty_cache_and_diag
from internlm.utils.logger import get_logger
from internlm.utils.megatron_timers import megatron_timer as timer
from internlm.utils.parallel import get_parallel_log_file_name
from internlm.utils.storage_manager import init_storage_manager
from tools.load_internlm2_model import get_model_device, merge_pp_within_tp
# global llm logger
logger = logging.getLogger(__file__)
internlm_accelerator = get_accelerator()
def get_latest_subdirectory(folder_path):
if ":" in folder_path:
prefix, folder_path = folder_path.split(":", 1)
prefix += ":"
else:
prefix = ""
subdirectories = [name for name in os.listdir(folder_path) if os.path.isdir(os.path.join(folder_path, name))]
subdirectories_sorted = sorted(
subdirectories, key=lambda x: os.path.getctime(os.path.join(folder_path, x)), reverse=True
)
if subdirectories_sorted:
return prefix + os.path.join(folder_path, subdirectories_sorted[0])
else:
return None
def main():
enable_pytorch_expandable_segments()
generation_config = gpc.config["generation"]
generation_config = type(
"",
(object,),
{
"output_folder": Path(generation_config["output_folder"]),
"ckpt_folder": generation_config["ckpt_folder"]
if "ckpt_folder" in generation_config
else get_latest_subdirectory(gpc.config.ckpt.save_ckpt_folder),
"data_folder": generation_config["data_folder"] if "data_folder" in generation_config else None,
"batch_size": generation_config.get("batch_size", None),
"eos_id": generation_config.get("eos_id", 2),
"bos_id": generation_config.get("bos_id", 1),
"pad_id": generation_config.get("bos_id", 1),
"additional_eos_token_list": generation_config.get("additional_eos_token_list", None),
"max_length": generation_config.get("max_length", 100),
"do_sample": generation_config.get("do_sample", True),
"temperature": generation_config.get("temperature", 1.0),
"num_beams": generation_config.get("num_beams", 1),
"top_k": generation_config.get("top_k", 50),
"top_p": generation_config.get("top_p", 1.0),
"repetition_penalty": generation_config.get("repetition_penalty", 1),
"length_penalty": generation_config.get("length_penalty", 1.0),
},
)
if not os.path.exists(generation_config.output_folder.absolute()):
generation_config.output_folder.mkdir(exist_ok=True, parents=True)
# get and broadcast current time
current_time = launch_time()
objs = [current_time]
torch.distributed.broadcast_object_list(objs, src=0)
current_time = objs[0].replace(":", ".")
global logger
logger = get_logger(
__file__, launch_time=current_time, job_name=gpc.config.JOB_NAME, file_name=get_parallel_log_file_name()
)
try:
init_storage_manager(False, None, None)
except AssertionError:
pass
except Exception as e:
raise e
# initialize model
model = initialize_model()
_ = initialize_parallel_communicator(model)
model = model.model
state_dict = merge_pp_within_tp(generation_config.ckpt_folder, del_model_prefix=True)
missing_k, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if len(missing_k) != 0:
logger.warning(f"Warning: missing keys {missing_k}")
if len(unexpected_keys) != 0:
logger.warning(f"Warning: unexpected keys {unexpected_keys}")
param_dtype = gpc.config.model.dtype
if isinstance(param_dtype, str):
try:
param_dtype = eval(param_dtype) # pylint: disable=W0123
finally:
pass
if param_dtype == "torch.tf32":
param_dtype = torch.float32
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
model.to(param_dtype)
model.eval()
torch.distributed.barrier()
data_cfg = gpc.config.data
if generation_config.data_folder:
data_cfg.valid_folder = generation_config.data_folder
gene_dls = build_generation_loader_with_data_type(data_cfg, generation_config)
sequenece_generator = SequenceGenerator(
decoder=model,
eos_token_id=generation_config.eos_id,
pad_token_id=generation_config.bos_id,
bos_token_id=generation_config.pad_id,
additional_eos_token_list=generation_config.additional_eos_token_list,
)
ds_count = 0
gc.disable()
with torch.inference_mode():
for ds_name, gene_dl in gene_dls.items():
if len(gene_dl) == 0:
logger.info(f"Validation dataset: {ds_name} is empty")
continue
timer(f"dataset {ds_count}").start()
# pylint: disable=forgotten-debug-statement
all_output_str = []
# pylint: disable=unused-variable
for val_idx, (labels, input_ids) in tqdm(
enumerate(gene_dl),
desc="generate.",
total=len(gene_dl),
position=1,
leave=False,
):
empty_cache_and_diag(val_idx, interval=gpc.config.data.empty_cache_and_diag_interval)
input_ids = torch.LongTensor(input_ids)
if input_ids.size(1) >= generation_config.max_length:
logger.warning(
f"Not generating for the {val_idx}'th batch, because the sequence "
f"length of the batch is {input_ids.size(1)} over the max generation"
f"length {generation_config.max_length}"
)
output_ids = input_ids[:, : generation_config.max_length, ...]
else:
input_ids = input_ids.clamp(min=0, max=gpc.config.model.vocab_size).to(get_model_device(model))
output_ids = sequenece_generator.generate(
tokens=input_ids,
max_length=generation_config.max_length,
do_sample=generation_config.do_sample,
temperature=generation_config.temperature,
num_beams=generation_config.num_beams,
top_k=generation_config.top_k,
top_p=generation_config.top_p,
repetition_penalty=generation_config.repetition_penalty,
length_penalty=generation_config.length_penalty,
)
for output in output_ids:
not_pad_indices = torch.nonzero(output != generation_config.pad_id)
if not_pad_indices.nelement() != 0:
sequence = output[not_pad_indices[0] :]
else:
sequence = output
sequence = sequence.tolist()
line = str.encode(json.dumps({"tokens": sequence}))
all_output_str.append(
(
line,
len(line),
)
)
bin_meta, last_position = [], 0
with open(generation_config.output_folder.joinpath(f"{ds_name}.bin"), "wb") as file:
for line, token_num in all_output_str:
file.write(line)
bin_meta.append((last_position, token_num))
last_position += len(line)
with open(generation_config.output_folder.joinpath(f"{ds_name}.bin.meta"), "wb") as file:
np.save(file, bin_meta)
timer(f"dataset {ds_count}").stop()
ds_count += 1
if __name__ == "__main__":
args = parse_args()
hostname = socket.gethostname()
# initialize distributed environment
initialize_distributed_env(config=args.config, launcher=args.launcher, master_port=args.port, seed=args.seed)
assert hasattr(gpc, "config") and gpc.config is not None
assert "generation" in gpc.config, f"Please set `generation` config in `{args.config}` file"
assert (
"output_folder" in gpc.config["generation"]
), "Must set `output_folder` for the save folder of generation data"
# initialize monitor manager context
with initialize_monitor_manager(
job_name=gpc.config.JOB_NAME, alert_address=gpc.config.monitor.alert.feishu_alert_address
):
try:
main()
except Exception:
logger.error(
f"Raise exception from {hostname} with rank id: {gpc.get_global_rank()}\n{traceback.format_exc()}",
)
mm.monitor_exception(
alert_address=gpc.config.monitor.alert.feishu_alert_address, excp_info=traceback.format_exc()
)
# internlm_accelerator.memory._dump_snapshot(f"my_snapshot_{gpc.get_global_rank()}.pickle")
finally:
# local rank0 delete all files in shm_path, when use shm
devices_per_node = internlm_accelerator.device_count()
local_rank = gpc.get_global_rank() % devices_per_node
if gpc.config.data.use_shm and local_rank == 0:
if os.path.exists(gpc.config.data.shm_path):
shutil.rmtree(gpc.config.data.shm_path)