-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrain.py
91 lines (72 loc) · 2.77 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os, time, shutil
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import AverageMeter
from dataset.loader import Real, Syn
from model.cbdnet import Network, fixed_loss
parser = argparse.ArgumentParser(description = 'Train')
parser.add_argument('--bs', default=32, type=int, help='batch size')
parser.add_argument('--ps', default=128, type=int, help='patch size')
parser.add_argument('--lr', default=2e-4, type=float, help='learning rate')
parser.add_argument('--epochs', default=5000, type=int, help='sum of epochs')
args = parser.parse_args()
def train(train_loader, model, criterion, optimizer):
losses = AverageMeter()
model.train()
for (noise_img, clean_img, sigma_img, flag) in train_loader:
input_var = noise_img.cuda()
target_var = clean_img.cuda()
sigma_var = sigma_img.cuda()
flag_var = flag.cuda()
noise_level_est, output = model(input_var)
loss = criterion(output, target_var, noise_level_est, sigma_var, flag_var)
losses.update(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
return losses.avg
if __name__ == '__main__':
save_dir = './save_model/'
model = Network()
model.cuda()
model = nn.DataParallel(model)
if os.path.exists(os.path.join(save_dir, 'checkpoint.pth.tar')):
# load existing model
model_info = torch.load(os.path.join(save_dir, 'checkpoint.pth.tar'))
print('==> loading existing model:', os.path.join(save_dir, 'checkpoint.pth.tar'))
model.load_state_dict(model_info['state_dict'])
optimizer = torch.optim.Adam(model.parameters())
optimizer.load_state_dict(model_info['optimizer'])
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
scheduler.load_state_dict(model_info['scheduler'])
cur_epoch = model_info['epoch']
else:
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
# create model
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
cur_epoch = 0
criterion = fixed_loss()
criterion.cuda()
train_dataset = Real('./data/SIDD_train/', 320, args.ps) + Syn('./data/Syn_train/', 100, args.ps)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.bs, shuffle=True, num_workers=8, pin_memory=True, drop_last=True)
for epoch in range(cur_epoch, args.epochs + 1):
loss = train(train_loader, model, criterion, optimizer)
scheduler.step()
torch.save({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
'scheduler' : scheduler.state_dict()},
os.path.join(save_dir, 'checkpoint.pth.tar'))
print('Epoch [{0}]\t'
'lr: {lr:.6f}\t'
'Loss: {loss:.5f}'
.format(
epoch,
lr=optimizer.param_groups[-1]['lr'],
loss=loss))