This project implements the Hadoop Fileystem API for GEDS.
Apache Spark and Hadoop interact with GEDS in the following way:
Make sure SBT is installed on the system. Install GEDS and then run the package script:
export GEDS_INSTALL=$HOME/geds-install # GEDS install path
sbt package
The library will be located in target/scala-2.12/
.
The tests can be executed by running sbt test
. The backing object store can be configured with the following environment variables:
TEST_BUCKET
: Bucket for the storage location (default:test
)AWS_ACCESS_KEY_ID
: The access key for the object store (default:minioadmin
)AWS_SECRET_ACCESS_KEY
: The secret access key for the object store (default:minioadmin
)AWS_ENDPOINT_URL
: The URL of the backing object store (http://10.100.0.15:9000
)
Place the GEDS-HDFS plugin, geds.jar
into the Java class path, and libgeds_java.so
into the LD_LIBRARY
path. GEDS can then be configured with the following variables:
fs.geds.impl
:com.ibm.geds.hdfs.GEDSHadoopFileSystem
- Requiredfs.geds.metadataserver
: Ip or DNS of the metadata server - Required (can be alternatively configured by setting theGEDS_METADATASERVER
environment variable)fs.geds.cache_block_size
: GEDS cache block size in bytes. Example:33554432
- Optional (can be alternatively configured by setting theGEDS_CACHE_BLOCK_SIZE
environment variable)fs.geds.path
: Local GEDS path for ephemeral data. A path that ends withXXXXXX
will be randomized withmktempd
. Default:/tmp/GEDSHadoop
- Optional (can be alternatively configured by setting theGEDS_LOCAL_STORAGE_PATH
environment variable).fs.geds.port
: Local port for the GEDS service. - Optional (can be alternatively configured by setting theGEDS_PORT
environment variable)fs.geds.http_server_port
: Local port for the HTTP service. - Optional (can be alternatively configured by setting theGEDS_HTTP_SERVER_PORT
environment variable)
GEDS allows mapping individual buckets to S3. For each bucket, the following configuration variables can be passed to enable a S3 mapping.
fs.geds.BUCKET_NAME.accessKey
: S3 Access key forBUCKET_NAME
.fs.geds.BUCKET_NAME.secretKey
: S3 Secret key forBUCKET_NAME
.fs.geds.BUCKET_NAME.endpoint
: S3 Endpoint to use forBUCKET_NAME
.
The bucket zrlio-tpcds
is mapped to S3 to enable caching.
--conf spark.hadoop.fs.geds.impl="com.ibm.geds.hdfs.GEDSHadoopFileSystem"
--conf spark.hadoop.fs.geds.metadataserver="geds-service:40001"
--conf spark.hadoop.fs.geds.blocksize=$((32*1024*1024))
--conf spark.hadoop.fs.geds.path=/geds
--conf spark.hadoop.fs.geds.zrlio-tpcds.accessKey="${S3A_ACCESS_KEY}"
--conf spark.hadoop.fs.geds.zrlio-tpcds.secretKey="${S3A_SECRET_KEY}"
--conf spark.hadoop.fs.geds.zrlio-tpcds.endpoint="${S3A_ENDPOINT}"
The Hadoop FileSystem constructor is called once per hostname
in the filesystem URI.
- For
s3a
this means, that for every bucket there is a separate instance of theS3AFilesystem
. Each bucket is accessed throughs3a://bucket/key
. For each bucket we can define different S3 credentials or an endpoint. - For
crail
this means, that the constructor forCrailHDFS
is called once, since the Crail filesystem is based on the URL to the namenode. There is typically only one Crail namenode running. Crail filesystems are typically defined withcrail://namenode:port/
. - For
geds
we want to emulate thes3a
model to keep the bucket configuration, but forward the calls to a singleGEDS
instance. This allows us to add additional configuration (for example S3 mapping) for each bucket. EachGEDSHadoopFileSystem
instance will forward the calls to aGEDS
singleton. The singleton also allows us to more efficiently cache files locally.
Hadoop implements folders on Key/Value filesystems by placing an empty key with the name _$folder$
.
Example: A folder structure Nase/Baer
would create the following keys on the key/value filesystem:
Nase/_$folder$
Nase/Baer/_$folder$
The Hadoop API specifies the following API for renaming paths (source):
/**
* Renames Path src to Path dst.
* @param src path to be renamed
* @param dst new path after rename
* @throws IOException on failure
* @return true if rename is successful
*/
public abstract boolean rename(Path src, Path dst) throws IOException;
- Rename needs to return
true
if the command has been successful - An
IOException
otherwise.
Below is a list of projects that implement the Hadoop Filesystem which we can use as a reference.
-
s3a:// S3AFileSystem
Minimal config:
--conf spark.hadoop.fs.s3a.access.key=Nase --conf spark.hadoop.fs.s3a.secret.key=Baer --conf spark.hadoop.fs.s3a.endpoint=http://endpoint/ --conf spark.hadoop.fs.s3a.impl=org.apache.hadoop.fs.s3a.S3AFileSystem
-
crail:// CrailHDFS
Minimal config:
<property> <name>fs.crail.impl</name> <value>org.apache.crail.hdfs.CrailHadoopFileSystem</value> </property> <property> <name>fs.defaultFS</name> <value>crail://localhost:9060</value> </property> <property> <name>fs.AbstractFileSystem.crail.impl</name> <value>org.apache.crail.hdfs.CrailHDFS</value> </property>
Note: Crail is special since it defines
fs.defaultFS
and usesAbstractFileSystem
as a base implementation. For our use-case we want to model thes3a
-approach:- We don't want to override
fs.defaultFS
GEDSHadoopFileSystem
should inherit fromorg.apache.hadoop.fs.FileSystem
directly
- We don't want to override
-
https:// AbstractHttpFileSystem
Note: This filesystem does not allow listing objects.