forked from sameerd/DiffusionTensorImaging
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfreewater.py
336 lines (278 loc) · 13.9 KB
/
freewater.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import numpy as np
def dx_manifold(manifold, idx):
"Backwards difference of manifold co-ordinate idx along the x-axis"
dx = np.empty(manifold.shape[:-1] + (1,), dtype=manifold.dtype)
dx[1:,:, :, 0] = manifold[1:, :, :, idx] - manifold[:-1,:, :, idx]
dx[0, :, :, 0] = 0.
return(dx)
def dy_manifold(manifold, idx):
"Backwards difference of manifold co-ordinate idx along the y-axis"
dy = np.empty(manifold.shape[:-1] + (1,), dtype=manifold.dtype)
dy[:,1:, :, 0] = manifold[:, 1:, :, idx] - manifold[:, :-1, :, idx]
dy[:, 0, :, 0] = 0.
return(dy)
def dz_manifold(manifold, idx):
"Backwards difference of manifold co-ordinate idx along the z-axis"
dz = np.empty(manifold.shape[:-1] + (1,), dtype=manifold.dtype)
dz[:, :,1:, 0] = manifold[:,:, 1:, idx] - manifold[:, :, :-1, idx]
dz[:, :,0, 0] = 0.
return(dz)
def dpx(p):
"""Forwards derivative of the p,q,r vectors wrt x"""
p = np.squeeze(p)
ret = np.empty_like(p)
ret[:-1, :, :] = p[1:, :, :] - p[:-1, :,:]
ret[-1, :, :] = 0.
return(ret)
def dpy(p):
"""Forwards derivative of the p,q,r vectors wrt y"""
p = np.squeeze(p)
ret = np.empty_like(p)
ret[:, :-1, :] = p[:,1:, :] - p[:, :-1, :]
ret[:, -1, :] = 0.
return(ret)
def dpz(p):
"""Forwards derivative of the p,q,r vectors wrt z"""
p = np.squeeze(p)
ret = np.empty_like(p)
ret[:,:, :-1] = p[:, :, 1:] - p[:, :, :-1]
ret[:,:, -1] = 0.
return(ret)
def create_feature_spatial_manifold(S0, D):
b0_shape = S0.shape
d_shape = D.shape
if (b0_shape[:3] != d_shape[:3]):
raise ValueError("b0_shape = %s and d_shape = %s." \
"The first three dimensions need to match"
% (b0_shape, d_shape))
manifold_shape = d_shape[:3] + (6,)
manifold = np.empty(manifold_shape, dtype=D.dtype)
manifold[...,0] = D[...,0,0]
manifold[...,1] = D[...,1,1]
manifold[...,2] = D[...,2,2]
manifold[...,3] = D[...,0,1] * np.sqrt(2)
manifold[...,4] = D[...,1,2] * np.sqrt(2)
manifold[...,5] = D[...,0,2] * np.sqrt(2)
return(manifold)
def convert_manifold_to_lower_tri_order(manifold):
"""The lower tri ordering is
[Dxx, Dxy, Dyy, Dxz,Dyz, Dzz].
The manifold ordering is
[Dxx, Dyy, Dzz, sqrt(2)*Dxy, sqrt(2)*Dyz, sqrt(2)*Dzz].
"""
ret = manifold[..., np.array([0,3,1,5,4,2])]
ret[...,1] /= np.sqrt(2) # Dxy
ret[...,3] /= np.sqrt(2) # Dxz
ret[...,4] /= np.sqrt(2) # Dyz
return(ret)
class FreeWaterGradientDescent:
"""Class to run the Free Water Gradient Descent Computations"""
def __init__(self, Ahat, manifold, f_init, gtab, b_value, dt,
beta = 10., alpha_reg=1., water_d = 3e-3,
fmin = 0., fmax = 1.):
self.b_value = b_value
self.dt = dt
self.beta = beta
self.alpha_reg = alpha_reg
# internal constants that do not change anything
# (can be used to modify flow)
self.alpha_fid = 1.
self.alpha_f = 1.
self.Awater_scalar = np.exp(-water_d * self.b_value)
# these two variables are not modified at all in this class
self.gtab = gtab
self.Ahat = Ahat
self.qk = self.gtab.bvecs[~self.gtab.b0s_mask]
self.manifold_init = manifold
self.f_init = f_init
self.fmin = fmin
self.fmax = fmax
# numpy arrays that will be iteratated over
self.manifold = self.manifold_init.copy()
self.f = self.f_init.copy()
# All the intermediate arrays (self.X4x, self.g11 etc)
# should be initialized however lets not do it right now
# list of tracers to call at various points during execution
self.tracers = []
def compute_regularization_increments(self):
self.X4x = dx_manifold(self.manifold, 0)
self.X4y = dy_manifold(self.manifold, 0)
self.X4z = dz_manifold(self.manifold, 0)
self.X5x = dx_manifold(self.manifold, 1)
self.X5y = dy_manifold(self.manifold, 1)
self.X5z = dz_manifold(self.manifold, 1)
self.X6x = dx_manifold(self.manifold, 2)
self.X6y = dy_manifold(self.manifold, 2)
self.X6z = dz_manifold(self.manifold, 2)
self.X7x = dx_manifold(self.manifold, 3)
self.X7y = dy_manifold(self.manifold, 3)
self.X7z = dz_manifold(self.manifold, 3)
self.X8x = dx_manifold(self.manifold, 4)
self.X8y = dy_manifold(self.manifold, 4)
self.X8z = dz_manifold(self.manifold, 4)
self.X9x = dx_manifold(self.manifold, 5)
self.X9y = dy_manifold(self.manifold, 5)
self.X9z = dz_manifold(self.manifold, 5)
self.g11 = np.ones(self.X4x.shape) + self.beta * \
(self.X4x*self.X4x + self.X5x*self.X5x + self.X6x*self.X6x +
self.X7x*self.X7x + self.X8x*self.X8x + self.X9x*self.X9x)
self.g22 = np.ones(self.X4y.shape) + self.beta * \
(self.X4y*self.X4y + self.X5y*self.X5y + self.X6y*self.X6y +
self.X7y*self.X7y + self.X8y*self.X8y + self.X9y*self.X9y)
self.g33 = np.ones(self.X4z.shape) + self.beta * \
(self.X4z*self.X4z + self.X5z*self.X5z + self.X6z*self.X6z +
self.X7z*self.X7z + self.X8z*self.X8z + self.X9z*self.X9z)
self.g12 = self.beta * (self.X4x*self.X4y + self.X5x*self.X5y +
self.X6x*self.X6y + self.X7x*self.X7y + self.X8x*self.X8y +
self.X9x*self.X9y)
self.g23 = self.beta * (self.X4y*self.X4z + self.X5y*self.X5z +
self.X6y*self.X6z + self.X7y*self.X7z + self.X8y*self.X8z +
self.X9y*self.X9z)
self.g13 = self.beta * (self.X4x*self.X4z + self.X5x*self.X5z +
self.X6x*self.X6z + self.X7x*self.X7z + self.X8x*self.X8z +
self.X9x*self.X9z)
self.C11 = self.g22*self.g33 - self.g23*self.g23
self.C22 = self.g11*self.g33 - self.g13*self.g13
self.C33 = self.g11*self.g22 - self.g12*self.g12
self.C12 = -self.g12*self.g33 + self.g13*self.g23
self.C23 = -self.g11*self.g23 + self.g13*self.g12
self.C13 = self.g12*self.g23 - self.g13*self.g22
self.detg = self.g11*self.C11 + self.g12*self.C12 + self.g13*self.C13
self.gm05 = 1. / np.sqrt(self.detg)
self.p4 = self.C11*self.X4x + self.C12*self.X4y + self.C13*self.X4z
self.p5 = self.C11*self.X5x + self.C12*self.X5y + self.C13*self.X5z
self.p6 = self.C11*self.X6x + self.C12*self.X6y + self.C13*self.X6z
self.p7 = self.C11*self.X7x + self.C12*self.X7y + self.C13*self.X7z
self.p8 = self.C11*self.X8x + self.C12*self.X8y + self.C13*self.X8z
self.p9 = self.C11*self.X9x + self.C12*self.X9y + self.C13*self.X9z
self.q4 = self.C12*self.X4x + self.C22*self.X4y + self.C23*self.X4z
self.q5 = self.C12*self.X5x + self.C22*self.X5y + self.C23*self.X5z
self.q6 = self.C12*self.X6x + self.C22*self.X6y + self.C23*self.X6z
self.q7 = self.C12*self.X7x + self.C22*self.X7y + self.C23*self.X7z
self.q8 = self.C12*self.X8x + self.C22*self.X8y + self.C23*self.X8z
self.q9 = self.C12*self.X9x + self.C22*self.X9y + self.C23*self.X9z
self.r4 = self.C13*self.X4x + self.C23*self.X4y + self.C33*self.X4z
self.r5 = self.C13*self.X5x + self.C23*self.X5y + self.C33*self.X5z
self.r6 = self.C13*self.X6x + self.C23*self.X6y + self.C33*self.X6z
self.r7 = self.C13*self.X7x + self.C23*self.X7y + self.C33*self.X7z
self.r8 = self.C13*self.X8x + self.C23*self.X8y + self.C33*self.X8z
self.r9 = self.C13*self.X9x + self.C23*self.X9y + self.C33*self.X9z
# Beltrami operator incrementals
self.b4inc = (dpx(self.p4 * self.gm05) + dpy(self.q4 * self.gm05) +
dpz(self.r4 * self.gm05)) * np.squeeze(self.gm05)
self.b5inc = (dpx(self.p5 * self.gm05) + dpy(self.q5 * self.gm05) +
dpz(self.r5 * self.gm05)) * np.squeeze(self.gm05)
self.b6inc = (dpx(self.p6 * self.gm05) + dpy(self.q6 * self.gm05) +
dpz(self.r6 * self.gm05)) * np.squeeze(self.gm05)
self.b7inc = (dpx(self.p7 * self.gm05) + dpy(self.q7 * self.gm05) +
dpz(self.r7 * self.gm05)) * np.squeeze(self.gm05)
self.b8inc = (dpx(self.p8 * self.gm05) + dpy(self.q8 * self.gm05) +
dpz(self.r8 * self.gm05)) * np.squeeze(self.gm05)
self.b9inc = (dpx(self.p9 * self.gm05) + dpy(self.q9 * self.gm05) +
dpz(self.r9 * self.gm05)) * np.squeeze(self.gm05)
def compute_fidelity_increments(self):
""" This is negative of the partial derivative wrt each variable"""
self.Ahat_tissue_curr = \
self.qk[:, 0] * self.qk[:, 0] * self.manifold[..., 0:1] + \
self.qk[:, 1] * self.qk[:, 1] * self.manifold[..., 1:2] + \
self.qk[:, 2] * self.qk[:, 2] * self.manifold[..., 2:3] + \
self.qk[:, 0] * self.qk[:, 1] * self.manifold[..., 3:4] * np.sqrt(2)+\
self.qk[:, 1] * self.qk[:, 2] * self.manifold[..., 4:5] * np.sqrt(2)+\
self.qk[:, 0] * self.qk[:, 2] * self.manifold[..., 5:6] * np.sqrt(2)
# prevent underflow # FIXME: set correct underflow constant
#np.clip(self.Ahat_tissue_curr, a_min=1e-7, a_max=None,
# out=self.Ahat_tissue_curr)
self.Ahat_tissue_curr = np.exp(-self.b_value * self.Ahat_tissue_curr)
self.A_bi = self.f * self.Ahat_tissue_curr + (1 - self.f) * \
self.Awater_scalar
self.fidmat = (-self.b_value) * (self.Ahat[..., ~self.gtab.b0s_mask] -
self.A_bi) * self.Ahat_tissue_curr
# FIXME: Do we multiply by f or not? f is mostly positive so it might
# not matter.
self.fidmat = self.f * self.fidmat
self.fid4inc = (self.fidmat*(self.qk[:, 0]*self.qk[:, 0])).sum(axis=-1)
self.fid5inc = (self.fidmat*(self.qk[:, 1]*self.qk[:, 1])).sum(axis=-1)
self.fid6inc = (self.fidmat*(self.qk[:, 2]*self.qk[:, 2])).sum(axis=-1)
self.fid7inc = (self.fidmat*(self.qk[:, 0]*self.qk[:, 1])).sum(axis=-1)\
* np.sqrt(2) # 2 / sqrt(2)
self.fid8inc = (self.fidmat*(self.qk[:, 1]*self.qk[:, 2])).sum(axis=-1)\
* np.sqrt(2)
self.fid9inc = (self.fidmat*(self.qk[:, 0]*self.qk[:, 2])).sum(axis=-1)\
* np.sqrt(2)
def compute_f_increment(self):
""" This is negative of the partial derivative wrt f"""
self.finc = (self.alpha_f) * (self.b_value) * (
(self.Ahat[..., ~self.gtab.b0s_mask] - self.A_bi) *
(self.Ahat_tissue_curr - self.Awater_scalar)).sum(axis=-1)
def compute_manifold_increments(self):
#incrementals are the sum of the fidelity incrementals and the beltrami
#incrementals
def compute_one_manifold_increment(fidinc, reginc):
return(self.alpha_fid * fidinc + self.alpha_reg * reginc)
self.x4inc = compute_one_manifold_increment(self.fid4inc, self.b4inc)
self.x5inc = compute_one_manifold_increment(self.fid5inc, self.b5inc)
self.x6inc = compute_one_manifold_increment(self.fid6inc, self.b6inc)
self.x7inc = compute_one_manifold_increment(self.fid7inc, self.b7inc)
self.x8inc = compute_one_manifold_increment(self.fid8inc, self.b8inc)
self.x9inc = compute_one_manifold_increment(self.fid9inc, self.b9inc)
def compute_fidelity_loss(self):
self.loss_fid = np.linalg.norm(self.Ahat[..., ~self.gtab.b0s_mask] -
self.A_bi, axis=-1)
self.loss_fid *= self.loss_fid
def compute_volume_loss(self):
self.loss_vol = np.sqrt(self.detg)
def compute_total_fidelity_loss(self):
self.total_loss_fid = np.sum(self.loss_fid)
def compute_total_volume_loss(self):
self.total_loss_vol = np.sum(self.loss_vol)
def compute_total_loss(self):
self.loss = self.alpha_fid*self.total_loss_fid + \
self.alpha_reg*self.total_loss_vol
def increment_manifold(self):
self.manifold[...,0] += self.dt * self.x4inc
self.manifold[...,1] += self.dt * self.x5inc
self.manifold[...,2] += self.dt * self.x6inc
self.manifold[...,3] += self.dt * self.x7inc
self.manifold[...,4] += self.dt * self.x8inc
self.manifold[...,5] += self.dt * self.x9inc
def constrain_manifold(self):
#np.clip(self.manifold, a_min=self.UNDERFLOW_MIN, a_max=1., out=self.manifold)
np.clip(self.manifold, a_min=-1., a_max=1., out=self.manifold)
def increment_f(self):
self.f[...,0] += self.dt * self.finc
self.f = self.f.squeeze() # we will expand it in constrain_f()
def constrain_f(self):
# make sure that the f values stay constrained
np.clip(self.f, a_min=self.fmin, a_max=self.fmax, out=self.f)
# FIXME: send values out of max and min into the middle
self.f = self.f[...,np.newaxis]
def iterate(self):
# compute increments
self.compute_regularization_increments()
self.compute_fidelity_increments()
self.compute_manifold_increments()
self.compute_f_increment()
self.trace("_after_increments_compute")
# loss functions
self.compute_fidelity_loss()
self.compute_volume_loss()
self.compute_total_fidelity_loss()
self.compute_total_volume_loss()
self.compute_total_loss()
self.trace("_after_loss_functions")
# increment
self.increment_manifold()
self.increment_f()
self.trace("_after_increment")
# constrain
self.constrain_manifold()
self.constrain_f()
self.trace("_after_constrain")
def init_tracers(self, tracers):
self.tracers = tracers
def trace(self, location):
for tracer in self.tracers:
tracer.trace(location, self)
def finalize(self):
for tracer in self.tracers:
tracer.finalize(self)