forked from open-compass/VLMEvalKit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
221 lines (195 loc) · 9.99 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import torch.distributed as dist
from vlmeval.config import supported_VLM
from vlmeval.dataset import build_dataset
from vlmeval.inference import infer_data_job
from vlmeval.inference_video import infer_data_job_video
from vlmeval.inference_mt import infer_data_job_mt
from vlmeval.smp import *
from vlmeval.utils.result_transfer import MMMU_result_transfer, MMTBench_result_transfer
def parse_args():
parser = argparse.ArgumentParser()
# Essential Args
parser.add_argument('--data', type=str, nargs='+', required=True)
parser.add_argument('--model', type=str, nargs='+', required=True)
# Args that only apply to Video Dataset
parser.add_argument('--nframe', type=int, default=8)
parser.add_argument('--pack', action='store_true')
parser.add_argument('--use-subtitle', action='store_true')
# Work Dir
parser.add_argument('--work-dir', type=str, default='.', help='select the output directory')
# Infer + Eval or Infer Only
parser.add_argument('--mode', type=str, default='all', choices=['all', 'infer'])
# API Kwargs, Apply to API VLMs and Judge API LLMs
parser.add_argument('--nproc', type=int, default=4, help='Parallel API calling')
parser.add_argument('--retry', type=int, default=None, help='retry numbers for API VLMs')
# Explicitly Set the Judge Model
parser.add_argument('--judge', type=str, default=None)
# Logging Utils
parser.add_argument('--verbose', action='store_true')
# Configuration for Resume
# Ignore: will not rerun failed VLM inference
parser.add_argument('--ignore', action='store_true', help='Ignore failed indices. ')
# Rerun: will remove all evaluation temp files
parser.add_argument('--rerun', action='store_true')
args = parser.parse_args()
return args
def main():
logger = get_logger('RUN')
args = parse_args()
assert len(args.data), '--data should be a list of data files'
if args.retry is not None:
for k, v in supported_VLM.items():
if hasattr(v, 'keywords') and 'retry' in v.keywords:
v.keywords['retry'] = args.retry
supported_VLM[k] = v
if hasattr(v, 'keywords') and 'verbose' in v.keywords:
v.keywords['verbose'] = args.verbose
supported_VLM[k] = v
rank, world_size = get_rank_and_world_size()
if world_size > 1:
local_rank = os.environ.get('LOCAL_RANK', 0)
torch.cuda.set_device(int(local_rank))
dist.init_process_group(backend='nccl', timeout=datetime.timedelta(seconds=10800))
for _, model_name in enumerate(args.model):
model = None
pred_root = osp.join(args.work_dir, model_name)
os.makedirs(pred_root, exist_ok=True)
for _, dataset_name in enumerate(args.data):
dataset_kwargs = {}
if dataset_name == 'MMLongBench_DOC':
dataset_kwargs['model'] = model_name
if dataset_name == 'MMBench-Video':
dataset_kwargs['pack'] = args.pack
if dataset_name == 'Video-MME':
dataset_kwargs['use_subtitle'] = args.use_subtitle
# If distributed, first build the dataset on the main process for doing preparation works
if world_size > 1:
dataset = build_dataset(dataset_name, **dataset_kwargs) if rank == 0 else None
dist.barrier()
dataset_list = [dataset]
dist.broadcast_object_list(dataset_list, src=0)
dataset = dataset_list[0]
else:
dataset = build_dataset(dataset_name, **dataset_kwargs)
if dataset is None:
logger.error(f'Dataset {dataset_name} is not valid, will be skipped. ')
continue
result_file = f'{pred_root}/{model_name}_{dataset_name}.xlsx'
if dataset_name in ['MMBench-Video']:
packstr = 'pack' if args.pack else 'nopack'
result_file = f'{pred_root}/{model_name}_{dataset_name}_{args.nframe}frame_{packstr}.xlsx'
if dataset_name in ['Video-MME']:
if args.pack:
logger.info('Video-MME not support Pack Mode, directly change to unpack')
args.pack = False
packstr = 'pack' if args.pack else 'nopack'
subtitlestr = 'subs' if args.use_subtitle else 'nosubs'
result_file = f'{pred_root}/{model_name}_{dataset_name}_{args.nframe}frame_{packstr}_{subtitlestr}.xlsx'
if dataset.TYPE == 'MT':
result_file = result_file.replace('.xlsx', '.tsv')
if osp.exists(result_file) and args.rerun:
for keyword in ['openai', 'gpt', 'auxmatch']:
os.system(f'rm {pred_root}/{model_name}_{dataset_name}_{keyword}*')
if model is None:
model = model_name # which is only a name
# Perform the Inference
if dataset.MODALITY == 'VIDEO':
model = infer_data_job_video(
model,
work_dir=pred_root,
model_name=model_name,
dataset=dataset,
nframe=args.nframe,
pack=args.pack,
verbose=args.verbose,
subtitle=args.use_subtitle,
api_nproc=args.nproc)
elif dataset.TYPE == 'MT':
model = infer_data_job_mt(
model,
work_dir=pred_root,
model_name=model_name,
dataset=dataset,
verbose=args.verbose,
api_nproc=args.nproc,
ignore_failed=args.ignore)
else:
model = infer_data_job(
model,
work_dir=pred_root,
model_name=model_name,
dataset=dataset,
verbose=args.verbose,
api_nproc=args.nproc,
ignore_failed=args.ignore)
# Set the judge kwargs first before evaluation or dumping
judge_kwargs = {
'nproc': args.nproc,
'verbose': args.verbose,
}
if args.retry is not None:
judge_kwargs['retry'] = args.retry
if args.judge is not None:
judge_kwargs['model'] = args.judge
else:
if dataset.TYPE in ['MCQ', 'Y/N']:
judge_kwargs['model'] = 'chatgpt-0125'
elif listinstr(['MMVet', 'MathVista', 'LLaVABench', 'MMBench-Video', 'MathVision'], dataset_name):
judge_kwargs['model'] = 'gpt-4-turbo'
elif listinstr(['MMLongBench', 'MMDU'], dataset_name):
judge_kwargs['model'] = 'gpt-4o'
if 'OPENAI_API_KEY_JUDGE' in os.environ and len(os.environ['OPENAI_API_KEY_JUDGE']):
judge_kwargs['key'] = os.environ['OPENAI_API_KEY_JUDGE']
if 'OPENAI_API_BASE_JUDGE' in os.environ and len(os.environ['OPENAI_API_BASE_JUDGE']):
judge_kwargs['api_base'] = os.environ['OPENAI_API_BASE_JUDGE']
if rank == 0:
if dataset_name in ['MMMU_TEST']:
result_json = MMMU_result_transfer(result_file)
logger.info(f'Transfer MMMU_TEST result to json for official evaluation, '
f'json file saved in {result_json}') # noqa: E501
continue
elif 'MMT-Bench_ALL' in dataset_name:
submission_file = MMTBench_result_transfer(result_file, **judge_kwargs)
logger.info(f'Extract options from prediction of MMT-Bench FULL split for official evaluation '
f'(https://eval.ai/web/challenges/challenge-page/2328/overview), '
f'submission file saved in {submission_file}') # noqa: E501
continue
elif 'MLLMGuard_DS' in dataset_name:
logger.info('The evaluation of MLLMGuard_DS is not supported yet. ') # noqa: E501
continue
elif 'AesBench_TEST' == dataset_name:
logger.info(f'The results are saved in {result_file}. '
f'Please send it to the AesBench Team via [email protected].') # noqa: E501
continue
if dataset_name in [
'MMBench_TEST_CN', 'MMBench_TEST_EN', 'MMBench', 'MMBench_CN',
'MMBench_TEST_CN_V11', 'MMBench_TEST_EN_V11', 'MMBench_V11', 'MMBench_CN_V11'
]:
if not MMBenchOfficialServer(dataset_name):
logger.error(
f'Can not evaluate {dataset_name} on non-official servers, '
'will skip the evaluation. '
)
continue
eval_proxy = os.environ.get('EVAL_PROXY', None)
old_proxy = os.environ.get('HTTP_PROXY', '')
if rank == 0 and args.mode == 'all':
if eval_proxy is not None:
proxy_set(eval_proxy)
eval_results = dataset.evaluate(result_file, **judge_kwargs)
if eval_results is not None:
assert isinstance(eval_results, dict) or isinstance(eval_results, pd.DataFrame)
logger.info(f'The evaluation of model {model_name} x dataset {dataset_name} has finished! ')
logger.info('Evaluation Results:')
if isinstance(eval_results, dict):
logger.info('\n' + json.dumps(eval_results, indent=4))
elif isinstance(eval_results, pd.DataFrame):
if len(eval_results) < len(eval_results.columns):
eval_results = eval_results.T
logger.info('\n' + tabulate(eval_results))
if eval_proxy is not None:
proxy_set(old_proxy)
if __name__ == '__main__':
load_env()
main()