For MMDetection instructions see the MMDetection README.
Because MMDetection requires importing the pipeline class defined numpy_loader.py
to load inputs,
all MMDetection scripts are within a single directory.
Similarly, common_vars.py
defines common config parameters.
All other scripts are adapted from the tools/
scripts provided in the MMDetection repository.
├── README.md <- This file
├── analyze_results.py <- Plots loss/mAP curves
├── browse_dataset.py <- Visualise annotations and dataset
├── combine_evaluation_scores.py <- Calculate mean/std of evaluation scores
├── common_vars.py <- Common configurations
├── numpy_loader.py <- Pipeline class to load NumPy inputs
├── slurm_bulk_test.sh <- Submit multiple evaluation jobs
├── slurm_submit.sh <- Submit a single training job
├── submit_all_seeds.sh <- Run multiple trainings with different seeds
├── test.py <- Evaluate a trained model
└── train.py <- Train a model
For plotting the training dataset, I've set up a copy of the config used for MaskRCNN R50 training but with augmentations removed. You can plot it with something like
python browse_dataset.py --output-dir /path/to.output/ --channel RGB --not-show ~/Wahn/configs/mmdet/common/plotting_config.py
TBD
TBD
You should set TOPDIR
to the top-level work directory of the training, then run
python analyze_results.py $TOPDIR/mask_*.py $TOPDIR/evaluation/eval_results.pkl $TOPDIR/evaluation/images_0.3/ --show-score-thr 0.3 --topk 50