-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference.py
46 lines (30 loc) · 1.32 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
from dataset import CellDataset, val_transform
from unet import UNet
from argparse import ArgumentParser
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument(
"--root_dir",
type=str,
default="/hkfs/work/workspace/scratch/hgf_pdv3669-health_train_data/train",
)
parser.add_argument("--from_checkpoint", type=str,
default='./lightning_logs/version_0/checkpoints/epoch=99-step=10000.ckpt')
parser.add_argument("--pred_dir", default='./pred')
parser.add_argument("--split", default="val", help="val=sequence c")
args = parser.parse_args()
device = torch.device("cuda")
root_dir = args.root_dir
pred_dir = args.pred_dir
split = args.split
model = UNet()
instance_seg_val_data = CellDataset(root_dir, split=split, transform=val_transform(), border_core=False)
instance_seg_valloader = torch.utils.data.DataLoader(
instance_seg_val_data, batch_size=16, shuffle=False, num_workers=12
)
# Load the trained weights from the checkpoint
checkpoint = torch.load(args.from_checkpoint)
model.load_state_dict(checkpoint['state_dict'])
# predict instances and save them in the pred_dir
model.predict_instance_segmentation_from_border_core(instance_seg_valloader, pred_dir=pred_dir)