forked from pratyushmaini/localizing-memorization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
executable file
·267 lines (218 loc) · 10.9 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from torchvision import transforms,datasets
import torch
import numpy as np
from torch.utils.data import DataLoader
import random, copy
import os
from utils import *
data_root = "/home/huajuan/mem_loc/data"
def seed_everything(seed: int):
# print("setting seed", seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
# torch.use_deterministic_algorithms()
cifar100_labels = ['apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm']
cifar100_label_to_idx = {label:i for i, label in enumerate(cifar100_labels)}
orthogonal_classes = ['apple', 'baby', 'bed', 'bottle', 'keyboard', 'lamp', 'sunflower', 'skyscraper', 'cloud', 'road']
class TensorDataset(torch.utils.data.Dataset):
def __init__(self, data_path, split):
root = data_path
self.split = split
self.data = torch.load(f"{root}/{split}_x.pt")
self.targets = torch.load(f"{root}/{split}_y.pt").long()
self.n_classes = torch.unique(self.targets).shape[0]
self.transform = None
def __getitem__(self, index):
x_data_index = self.data[index]
if self.transform:
x_data_index = self.transform(x_data_index)
return (x_data_index, self.targets[index], index)
def __len__(self):
return self.data.shape[0]
def get_split_ids(dataset_size, ratio):
indices = list(range(dataset_size))
random.Random(0).shuffle(indices)
split = int(dataset_size*ratio)
pre_indices, ft_indices = indices[split:], indices[:split]
pre_indices.sort()
ft_indices.sort()
# ipdb.set_trace()
return pre_indices, ft_indices
def corrupt_labels(dset, n_classes, corrupt_prob, seed = 0, label_noise = True):
labels = np.array(dset.targets)
#Intialise a random number generator
rng = np.random.default_rng(seed)
# mask = rng.random(len(labels)) <= corrupt_prob
num_examples = int(corrupt_prob*len(labels))
idx = rng.choice(np.arange(len(labels)), num_examples, replace = False)
mask = np.zeros(len(labels)).astype('int64')
mask[idx] = 1
if label_noise:
#Random label should not coincide with true label
if n_classes != 2: rnd_labels = rng.choice(n_classes - 2, num_examples) + 1 #we will do [(true + rand) % num_classes]
else: rnd_labels = 1
labels[idx] = (labels[idx] + rnd_labels) % n_classes
else:
rnd_labels = rng.choice(n_classes, num_examples)
labels[idx] = rnd_labels
labels = [int(x) for x in labels]
dset.targets = labels
try:
dset.labels = labels
except:
a = 1
return dset, mask
call_dataset = {"mnist":datasets.MNIST,
"cifar10":datasets.CIFAR10,
"svhn":datasets.SVHN
}
def return_basic_dset(dataset, split, log_factor=2, seed_superclass = 1, aug = True):
train = True if split == "tr" else False
dims = 1 if dataset in ["mnist"] else 3
normalize = (0.5,)*dims
if dataset in ["mnist", "svhn"]:
tvs_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomRotation(10),
transforms.ToTensor(),
transforms.Normalize(normalize, normalize),
])
else:
tvs_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(normalize, normalize),
])
tvs_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(normalize, normalize),
])
if split == "tr" and aug:
# tvs = tvs_train
#use AutoAugment
print ("Using AutoAugment")
# if dataset == "cifar10":
policy = torchvision.transforms.AutoAugmentPolicy.CIFAR10
tvs =transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.AutoAugment(policy=policy),
transforms.ToTensor(),
transforms.Normalize(normalize, normalize),
])
# import ipdb; ipdb.set_trace()
# print(policy)
# elif dataset == "svhn":
# policy = torchvision.transforms.AutoAugmentPolicy.SVHN
# tvs = transforms.Compose([tvs, torchvision.transforms.AutoAugment(policy=policy)])
else:
tvs = tvs_test
if dataset == 'svhn':
dset = dataset_with_indices(call_dataset[dataset])(f'{data_root}', download=True, split = 'train' if train else 'test', transform = tvs)
dset.targets = dset.labels
else:
dset = dataset_with_indices(call_dataset[dataset])(f'{data_root}', download=True, train=train, transform=tvs)
try:
n_classes = torch.tensor(dset.targets).max().item() + 1
except:
n_classes = dset.targets.max().item() + 1
return n_classes, dset
def get_dset(split, dataset, noise_ratio, indices, minority_ratio = 0, seed = 0, log_factor = 2, seed_superclass=1, split_ratio = 0.5, aug = True):
n_classes, dset = return_basic_dset(dataset, split, log_factor, seed_superclass, aug)
#get the correct slice
if indices is not None:
pre_indices, ft_indices = get_split_ids(dset.data.shape[0], ratio = split_ratio)
# print("Num indices less than 23446 = ", (torch.tensor(pre_indices) < 23446).sum().item())
indices = pre_indices if indices == "pre" else ft_indices
dset.data = dset.data[indices]
try: dset.targets = dset.targets[indices]
except: dset.targets = torch.tensor(dset.targets)[indices] #for cifar10
mask, mask2 = None, None
if noise_ratio > 0:
dset, mask = corrupt_labels(dset, n_classes, noise_ratio, seed)
if minority_ratio > 0:
assert("Not Implemented")
return dset, mask, mask2
def adjust_for_cscore(dset, mask, cscores, seed = 0, dataset = "cifar10"):
if dataset == "cifar10":
cscores_file = "data/cifar10-cscores-orig-order.npz"
#load cscores
cscores_file = np.load(cscores_file)
#npz to np array
cscores = cscores_file["scores"]
labels = cscores_file["labels"]
orig_labels = dset.targets
assert(np.array_equal(labels, orig_labels))
#if cscore is <0.5 set the mask to 1
mask = (cscores < 0.5).astype(int)
#no change to dataset needed for cifar10
return dset, mask
else:
assert(dataset == "mnist")
#load cscores
cscores = "data/cscores.npy"
#load cscores
cscores = np.load(cscores)
#load x, y based on tf ids
dset.data = np.load("data/mnist_byte_images.npy")
dset.targets = np.load("data/mnist_int_labels.npy")
#if cscore is <0.5 set the mask to 1
mask = (cscores < 0.5).astype(int)
return dset, mask
def return_loaders(all_args, get_frac = True, shuffle = True, split_ratio = 0.5, aug = True):
#datasets = [mnist_b_cifar, mnist_r_cifar, mnist_cifar, mnist, cifar10, fashionmnist] #blank, random, standard
split = "tr"
indices1, indices2 = ("pre", "ft") if get_frac else (None, None)
batch_size = all_args["batch_size"]
d1_tr, mask_noise1, mask_rare1 = get_dset(split, all_args["dataset1"], all_args["noise_1"], indices1, all_args["minority_1"], all_args["seed"], all_args["log_factor"], all_args["seed_superclass"], split_ratio= split_ratio, aug = aug)
if all_args["cscore"] > 0:
d1_tr, mask_noise1 = adjust_for_cscore(d1_tr, mask_noise1)
preloader = DataLoader(dataset=d1_tr, batch_size=batch_size, shuffle=shuffle, num_workers=12, prefetch_factor=4)
if get_frac:
d2_tr, mask_noise2, mask_rare2 = get_dset(split, all_args["dataset2"], all_args["noise_2"], indices2 , all_args["minority_2"], all_args["seed"], all_args["log_factor"], all_args["seed_superclass"], split_ratio= split_ratio, aug = aug)
ftloader = DataLoader(dataset=d2_tr, batch_size=batch_size, shuffle=shuffle, num_workers=12, prefetch_factor=4)
else:
d2_tr, mask_noise2, mask_rare2 = None, None, None
ftloader = None
#get test datasets
split = "te"
d1, _, _ = get_dset(split, all_args["dataset1"], 0, None)
preloader_test = DataLoader(dataset=d1, batch_size=batch_size, shuffle=False, num_workers=12, prefetch_factor=4)
if get_frac:
d2, _, _ = get_dset(split, all_args["dataset2"], 0, None)
ftloader_test = DataLoader(dataset=d2, batch_size=batch_size, shuffle=False, num_workers=12, prefetch_factor=4)
else:
d2 = None
ftloader_test = None
pre_dict = { "train_loader":preloader,
"test_loader":preloader_test,
"noise_mask":mask_noise1,
"rare_mask":mask_rare1,
"train_dataset": d1_tr
}
ft_dict = { "train_loader":ftloader,
"test_loader":ftloader_test,
"noise_mask":mask_noise2,
"rare_mask":mask_rare2,
"train_dataset": d2_tr
}
return pre_dict, ft_dict
def dataset_with_indices(cls):
"""
Modifies the given Dataset class to return a tuple data, target, index
instead of just data, target.
"""
# def __init__()
# self.indices = torch.arange(self.targets.shape[0])
def __getitem__(self, index):
data, target = cls.__getitem__(self, index)
return data, target, index
return type(cls.__name__, (cls,), {
'__getitem__': __getitem__,
})