forked from milesial/Pytorch-UNet
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
252 lines (204 loc) · 8.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#!/usr/bin/env python
import sys
import os
import math
import itertools
from optparse import OptionParser
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
from torch import optim
from unet import UNet
from uresnet import UResNet
from nestedunet import NestedUNet
from eval_util import eval_dice, eval_loss, eval_eff_pur
from utils import get_ids, split_ids, split_train_val, get_imgs_and_masks, batch
from utils import h5_utils as h5u
def print_lr(optimizer):
for param_group in optimizer.param_groups:
print(param_group['lr'])
def lr_exp_decay(optimizer, lr0, gamma, epoch):
lr = lr0*math.exp(-gamma*epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return optimizer
def train_net(net,
im_tags = ['frame_loose_lf0', 'frame_mp2_roi0', 'frame_mp3_roi0'],
ma_tags = ['frame_ductor0'],
truth_th = 100,
epochs=5,
samples=10,
batch_size=10,
lr=0.1,
val_percent=0.10,
save_cp=True,
gpu=False,
img_scale=0.5):
dir_checkpoint = 'checkpoints/'
ids = list(np.arange(samples))
iddataset = split_train_val(ids, val_percent)
outfile_log = open(dir_checkpoint+'/log','w')
print(iddataset['train'], file=outfile_log, flush=True)
print('''
Starting training:
Epochs: {}
Batch size: {}
Learning rate: {}
Training size: {}
Validation size: {}
Checkpoints: {}
CUDA: {}
'''.format(epochs, batch_size, lr, len(iddataset['train']),
len(iddataset['val']), str(save_cp), str(gpu)), file=outfile_log, flush=True)
N_train = len(iddataset['train'])
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=0.0005)
# optimizer = optim.Adam(net.parameters(), lr=lr)
criterion = nn.BCELoss()
print('''
im_tags: {}
ma_tags: {}
truth_th: {}
'''.format(im_tags,ma_tags,truth_th), file=outfile_log, flush=True)
outfile_loss_batch = open(dir_checkpoint+'/loss-batch.csv','w')
outfile_loss = open(dir_checkpoint+'/loss.csv','w')
outfile_eval_dice = open(dir_checkpoint+'/eval-dice.csv','w')
outfile_eval_loss = open(dir_checkpoint+'/eval-loss.csv','w')
eval_labels = [
'75-75',
'87-85',
]
eval_imgs = []
eval_masks = []
for label in eval_labels:
eval_imgs.append('eval/eval-'+label+'/g4-rec-0.h5')
eval_masks.append('eval/eval-'+label+'/g4-tru-0.h5')
outfile_ep = []
for label in eval_labels:
outfile_ep.append(open(dir_checkpoint+'/ep-'+label+'.csv','w'))
epoch_start = 0
for epoch in range(epoch_start,epoch_start+epochs):
# scheduler = lr_exp_decay(optimizer, lr, 0.04, epoch)
scheduler = optimizer
print('epoch: {} start'.format(epoch))
print(optimizer, file=outfile_log, flush=True)
file_img = 'data/cosmic-rec-0.h5'
file_mask = 'data/cosmic-tru-0.h5'
rebin = [1, 10]
x_range = [800, 1600]
y_range = [0, 600]
z_scale = 4000
print('''
file_img: {}
file_mask: {}
'''.format(file_img, file_mask), file=outfile_log, flush=True)
print('Starting epoch {}/{}.'.format(epoch + 1, epochs))
net.train()
train = zip(
h5u.get_chw_imgs(file_img, iddataset['train'], im_tags, rebin, x_range, y_range, z_scale),
h5u.get_masks(file_mask, iddataset['train'], ma_tags, rebin, x_range, y_range, truth_th)
)
val = zip(
h5u.get_chw_imgs(file_img, iddataset['val'], im_tags, rebin, x_range, y_range, z_scale),
h5u.get_masks(file_mask, iddataset['val'], ma_tags, rebin, x_range, y_range, truth_th)
)
eval_data = []
for i in range(len(eval_imgs)):
id_eval = [0]
eval_data.append(
zip(
h5u.get_chw_imgs(eval_imgs[i], id_eval, im_tags, rebin, x_range, y_range, z_scale),
h5u.get_masks(eval_masks[i], id_eval, ma_tags, rebin, x_range, y_range, truth_th)
)
)
epoch_loss = 0
for i, b in enumerate(batch(train, batch_size)):
imgs = np.array([i[0] for i in b]).astype(np.float32)
true_masks = np.array([i[1] for i in b])
imgs = torch.from_numpy(imgs)
true_masks = torch.from_numpy(true_masks)
if gpu:
imgs = imgs.cuda()
true_masks = true_masks.cuda()
masks_pred = net(imgs)
masks_probs_flat = masks_pred.view(-1)
true_masks_flat = true_masks.view(-1)
loss = criterion(masks_probs_flat, true_masks_flat)
epoch_loss += loss.item()
print('{} : {:.4f} --- loss: {:.6f}'.format(epoch, i * batch_size / N_train, loss.item()))
print('{:.4f}, {:.6f}'.format(i * batch_size / N_train, loss.item()), file=outfile_loss_batch, flush=True)
optimizer.zero_grad()
loss.backward()
# optimizer.step()
scheduler.step()
epoch_loss = epoch_loss / i
print('Epoch finished ! Loss: {:.6f}'.format(epoch_loss))
print('{:.4f}, {:.6f}'.format(epoch, epoch_loss), file=outfile_loss, flush=True)
if save_cp:
torch.save(net.state_dict(),
dir_checkpoint + 'CP{}-{}.pth'.format(epoch + 1,i+1))
print('Checkpoint e{} saved !'.format(epoch + 1))
if True:
val1, val2 = itertools.tee(val, 2)
val_dice = eval_dice(net, val1, gpu)
print('Validation Dice Coeff: {:.4f}, {:.6f}'.format(epoch, val_dice))
print('{:.4f}, {:.6f}'.format(epoch, val_dice), file=outfile_eval_dice, flush=True)
val_loss = eval_loss(net, criterion, val2, gpu)
print('Validation Loss: {:.4f}, {:.6f}'.format(epoch, val_loss))
print('{:.4f}, {:.6f}'.format(epoch, val_loss), file=outfile_eval_loss, flush=True)
for data, out in zip(eval_data,outfile_ep):
ep = eval_eff_pur(net, data, 0.5, gpu)
print('{}, {:.4f}, {:.4f}, {:.4f}, {:.4f}'.format(epoch, ep[0], ep[1], ep[2], ep[3]), file=out, flush=True)
def get_args():
parser = OptionParser()
parser.add_option('-e', '--epochs', dest='epochs', default=1, type='int',
help='number of epochs')
parser.add_option('-n', '--samples', dest='samples', default=10, type='int',
help='number of samples')
parser.add_option('-b', '--batch-size', dest='batchsize', default=1,
type='int', help='batch size')
parser.add_option('-l', '--learning-rate', dest='lr', default=0.1,
type='float', help='learning rate')
parser.add_option('-g', '--gpu', action='store_true', dest='gpu',
default=False, help='use cuda')
parser.add_option('-c', '--load', dest='load',
default=False, help='load file model')
parser.add_option('-s', '--scale', dest='scale', type='float',
default=0.5, help='downscaling factor of the images')
(options, args) = parser.parse_args()
return options
if __name__ == '__main__':
args = get_args()
torch.set_num_threads(1)
# im_tags = ['frame_tight_lf0', 'frame_loose_lf0'] #lt
im_tags = ['frame_loose_lf0', 'frame_mp2_roi0', 'frame_mp3_roi0'] # l23
# im_tags = ['frame_loose_lf0', 'frame_tight_lf0', 'frame_mp2_roi0', 'frame_mp3_roi0'] # lt23
ma_tags = ['frame_ductor0']
truth_th = 100
net = UNet(len(im_tags), len(ma_tags))
# net = UResNet(len(im_tags), len(ma_tags))
# net = NestedUNet(len(im_tags),len(ma_tags))
if args.load:
net.load_state_dict(torch.load(args.load))
print('Model loaded from {}'.format(args.load))
if args.gpu:
net.cuda()
# cudnn.benchmark = True # faster convolutions, but more memory
try:
train_net(net=net,
im_tags=im_tags,
ma_tags=ma_tags,
truth_th=truth_th,
epochs=args.epochs,
samples=args.samples,
batch_size=args.batchsize,
lr=args.lr,
gpu=args.gpu,
img_scale=args.scale)
except KeyboardInterrupt:
torch.save(net.state_dict(), 'INTERRUPTED.pth')
print('Saved interrupt')
try:
sys.exit(0)
except SystemExit:
os._exit(0)